首页> 外文会议>Computational linguistics and intelligent text processing >Emotion Holder for Emotional Verbs - The Role of Subject and Syntax
【24h】

Emotion Holder for Emotional Verbs - The Role of Subject and Syntax

机译:情感动词的情感持有人-主语和语法的作用

获取原文
获取原文并翻译 | 示例

摘要

Human-like holder plays an important role in identifying actual emotion expressed in text. This paper presents a baseline followed by syntactic approach for capturing emotion holders in the emotional sentences. The emotional verbs collected from WordNet Affect List (WAL) have been used in extracting the holder annotated emotional sentences from VerbNet. The baseline model is developed based on the subject information of the dependency-parsed emotional sentences. The unsupervised syntax based model is based on the relationship of the emotional verbs with their argument structure extracted from the head information of the chunks in the parsed sentences. Comparing the system extracted argument structure with available VerbNet frames' syntax for 942 emotional verbs, it has been observed that the model based on syntax outperforms the baseline model. The precision, recall and F-Score values for the baseline model are 63.21%, 66.54% and 64.83% and for the syntax based model are 68.11%, 65.89% and 66.98% respectively on a collection of 4,112 emotional sentences.
机译:类人持有人在识别文本表达的实际情感方面起着重要作用。本文提出了一种基线方法,然后采用句法方法来捕获情感句子中的情感持有者。从WordNet影响列表(WAL)收集的情感动词已用于从VerbNet提取持有者注释的情感句子。基线模型是基于依存关系分析的情感句子的主题信息开发的。基于无监督语法的模型基于情感动词与它们的参数结构的关系,这些参数是从解析的句子中的块的头部信息中提取的。将系统提取的自变量结构与942个情感动词的可用VerbNet框架的语法进行比较,已观察到基于语法的模型优于基线模型。基线模型的精度,召回率和F-Score值分别为63.21%,66.54%和64.83%,基于语法的模型分别为4,112个情感句,分别为68.11%,65.89%和66.98%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号