首页> 外文会议>Computational Life Sciences II; Lecture Notes in Bioinformatics; 4216 >Improved Robustness in Time Series Analysis of Gene Expression Data by Polynomial Model Based Clustering
【24h】

Improved Robustness in Time Series Analysis of Gene Expression Data by Polynomial Model Based Clustering

机译:基于多项式模型的聚类提高了基因表达数据时间序列分析的稳健性

获取原文
获取原文并翻译 | 示例

摘要

Microarray experiments produce large data sets that often contain noise and considerable missing data. Typical clustering methods such as hierarchical clustering or partitional algorithms can often be adversely affected by such data. This paper introduces a method to overcome such problems associated with noise and missing data by modelling the time series data with polynomials and using these models to cluster the data. Similarity measures for polynomials are given that comply with commonly used standard measures. The polynomial model based clustering is compared with standard clustering methods under different conditions and applied to a real gene expression data set. It shows significantly better results as noise and missing data axe increased.
机译:微阵列实验产生的大型数据集通常包含噪声和大量丢失的数据。典型的聚类方法(例如层次聚类或分区算法)通常会受到此类数据的不利影响。本文介绍了一种通过使用多项式对时间序列数据建模并使用这些模型对数据进行聚类来克服与噪声和数据丢失相关的问题的方法。给出了多项式的相似性度量,这些度量符合常用的标准度量。将基于多项式模型的聚类与不同条件下的标准聚类方法进行比较,并将其应用于实际基因表达数据集。随着噪声和丢失数据轴的增加,它显示出明显更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号