首页> 外文会议>Computational Intelligence and Signal Processing (CISP), 2012 2nd National Conference on >Discrete wavelet transform and principal component analysis based vapor discrimination by optimizing sense-and-purge cycle duration of SAW chemical sensor transients
【24h】

Discrete wavelet transform and principal component analysis based vapor discrimination by optimizing sense-and-purge cycle duration of SAW chemical sensor transients

机译:通过优化声表面波化学传感器瞬变的感测和吹扫循环持续时间,基于离散小波变换和主成分分析的蒸气识别

获取原文
获取原文并翻译 | 示例

摘要

Temporal evolution of response of chemical vapor sensors for step function like exposure and purge carries identity signatures of chemical analytes hidden in transient shapes. Representation of the transient response shapes by discrete wavelet transform (DWT) and principal component analysis (PCA) of wavelet approximation coefficients provides an efficient procedure for denoising and feature extraction. The present work is concerned with identification of volatile organic compounds (VOCs) by transient response analysis of polymer-coated surface acoustic wave (SAW) sensors. The sorption and diffusion kinetics of chemical molecules and polymer thickness determines the shapes of transient responses. The equilibration times for different vapor species are different for a given polymer coating. For a given exposure and purge cycle different vapor species with varied diffusion coefficients reach different stages of equilibration, hence loadings. Therefore, a pre-equilibrium termination of vapor exposure and purge durations can be expected to generate transient response shapes much richer in information compared to fully equilibrated condition. In this paper, we explore this aspect by carrying out a simulation based analysis of SAW sensor transients. The sense-and-purge cycle durations were varied for sensing of seven volatile organics by a polyisobutylene (PIB) coated SAW sensor. The transient signals were represented by DWT approximation coefficients based on Daubechies-2 mother wavelet. The vapor discrimination ability of an exposure and purge cycle was defined by the `class separability measure' calculated in the PCA generated feature space of DWT coefficients. The simulation experiments were carried out by varying exposure-and-purge durations and by adding different noise levels. It has been concluded that for obtaining best discrimination results in presence of noise the sense-and-purge duration must be optimized.
机译:化学气相传感器对阶跃功能(如曝光和吹扫)的响应的时间演变带有隐藏在瞬态形状中的化学分析物的特征标记。通过离散小波变换(DWT)和小波逼近系数的主成分分析(PCA)表示瞬态响应形状,为降噪和特征提取提供了有效的程序。本工作涉及通过聚合物涂层表面声波(SAW)传感器的瞬态响应分析来鉴定挥发性有机化合物(VOC)。化学分子的吸附和扩散动力学以及聚合物的厚度决定了瞬态响应的形状。对于给定的聚合物涂层,不同蒸气种类的平衡时间不同。对于给定的曝光和吹扫循环,具有不同扩散系数的不同蒸气会达到平衡的不同阶段,从而达到负荷。因此,与完全平衡的条件相比,可以预期蒸气暴露和吹扫时间的平衡前终止会产生瞬态响应形状,其信息要丰富得多。在本文中,我们通过对基于声表面波传感器瞬变的仿真进行分析来探索这一方面。感测和吹扫周期的持续时间有所不同,以便通过涂有聚异丁烯(PIB)的SAW传感器来感测七种挥发性有机物。瞬态信号由基于Daubechies-2母波的DWT近似系数表示。通过在PCA生成的DWT系数特征空间中计算出的“类可分离性度量”来定义曝光和吹扫循环的蒸汽分辨能力。通过改变曝光和吹扫时间并添加不同的噪声水平来进行仿真实验。已经得出结论,为了在存在噪声的情况下获得最佳区分结果,必须优化感测和吹扫时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号