首页> 外文会议>Computational Intelligence and Security (CIS), 2011 Seventh International Conference on >Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers
【24h】

Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers

机译:使用随机投影和K最近邻分类器进行基于行为的恶意软件分析和检测的方法

获取原文

摘要

In this paper, a two-stage methodology to analyze and detect behavioral-based malware is presented. In the first stage, a random projection is decreasing the variable dimensionality of the problem and is simultaneously reducing the computational time of the classification task by several orders of magnitude. In the second stage, a modified K-Nearest Neighbors classifier is used with Virus Total labeling of the file samples. This methodology is applied to a large number of file samples provided by F-Secure Corporation, for which a dynamic feature has been extracted during Deep Guard sandbox execution. As a result, the files classified as false negatives are used to detect possible malware that were not detected in the first place by Virus Total. The reduced number of selected false negatives allows the manual inspection by a human expert.
机译:本文提出了一种两阶段的方法来分析和检测基于行为的恶意软件。在第一阶段,随机投影会降低问题的可变维度,同时将分类任务的计算时间减少几个数量级。在第二阶段,将修改后的K最近邻分类器与文件样本的Virus Total标记一起使用。此方法适用于F-Secure Corporation提供的大量文件样本,在Deep Guard沙箱执行期间已为其提取了动态功能。结果,分类为假阴性的文件用于检测Virus Total首先未检测到的可能恶意软件。减少选择的假阴性的数量允许人类专家进行手动检查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号