首页> 外文会议>Bioinformatics Research and Development; Lecture Notes in Bioinformatics; 4414 >Individualized Predictions of Survival Time Distributions from Gene Expression Data Using a Bayesian MCMC Approach
【24h】

Individualized Predictions of Survival Time Distributions from Gene Expression Data Using a Bayesian MCMC Approach

机译:使用贝叶斯MCMC方法根据基因表达数据对存活时间分布进行个体化预测

获取原文
获取原文并翻译 | 示例

摘要

It has previously been demonstrated that gene expression data correlate with event-free and overall survival in several cancers. A number of methods exist that assign patients to different risk classes based on expression profiles of their tumor. However, predictions of actual survival times in years for the individual patient, together with confidence intervals on the predictions made, would provide a far more detailed view, and could aid the clinician considerably in evaluating different treatment options. Similarly, a method able to make such predictions could be analyzed to infer knowledge about the relevant disease genes, hinting at potential disease pathways and pointing to relevant targets for drug design. Here too, confidences on the relevance values for the individual genes would be useful to have.Our algorithm to tackle these questions builds on a hierarchical Bayesian approach, combining a Cox regression model with a hierarchical prior distribution on the regression parameters for feature selection. This prior enables the method to efficiently deal with the low sample number, high dimensionality setting characteristic of microarray datasets. We then sample from the posterior distribution over a patients survival time, given gene expression measurements and training data. This enables us to make statements such as "with probability 0.6, the patient will survive between 3 and 4 years". A similar approach is used to compute relevance values with confidence intervals for the individual genes measured.The method is evaluated on a simulated dataset, showing feasibility of the approach. We then apply the algorithm to a publicly available dataset on diffuse large B-cell lymphoma, a cancer of the lymphocytes, and demonstrate that it successfully predicts survival times and survival time distributions for the individual patient.
机译:先前已经证明,基因表达数据与几种癌症的无事件生存和总体生存相关。存在许多基于患者的肿瘤表达谱将患者分配到不同风险类别的方法。但是,对单个患者的年实际存活时间的预测以及所做预测的置信区间将提供更为详细的视图,并且可以在很大程度上帮助临床医生评估不同的治疗方案。同样,可以对能够做出此类预测的方法进行分析,以推断出与相关疾病基因有关的知识,暗示潜在的疾病途径并指向药物设计的相关目标。在这里,对单个基因的相关性值的置信度也将很有用。我们解决这些问题的算法基于分层贝叶斯方法,将Cox回归模型与回归参数的分层先验分布相结合,以进行特征选择。该现有技术使该方法能够有效地处理微阵列数据集的低样本数,高维设置特征。然后,在给定的基因表达测量值和训练数据的情况下,我们从患者生存时间的后验分布中取样。这使我们能够做出诸如“概率为0.6,患者将存活3至4年”之类的陈述。相似的方法被用于计算所测量的单个基因的置信区间的相关性值,该方法在模拟数据集上进行评估,表明了该方法的可行性。然后,我们将该算法应用于弥漫性大B细胞淋巴瘤(一种淋巴细胞的癌症)的公开数据集,并证明它成功地预测了每个患者的生存时间和生存时间分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号