首页> 外文会议>Bio-inspired systems: Computational and ambient intelligence >Artificial Neural Network Based Algorithm for Biomolecular Interactions Modeling
【24h】

Artificial Neural Network Based Algorithm for Biomolecular Interactions Modeling

机译:基于人工神经网络的生物分子相互作用建模算法

获取原文
获取原文并翻译 | 示例

摘要

With the advent of new genomic platforms there is the potential for data mining of genomic profiles associated with specific subclasses of disease. Many groups have focused on the identification of genes associated with these subclasses. Fewer groups have taken this analysis a stage further to identify potential associations between biomolecules to determine hypothetical inferred biological interaction networks (e.g. gene regulatory networks) associated with a given condition (termed the interactome). Here we present an artificial neural network based approach using the back propagation algorithm to explore associations between genes in hypothetical inferred pathways, by iteratively predicting the level of expression of each gene with the others, with respect to the genes associated with metastatic risk in breast cancer based on the publicly available van't Veer data set [1]. We demonstrate that we can identify a subset of genes that is strongly associated with others within the metastatic system. Many of these interactions are strongly representative of likely biological interactions and the interacting genes are known to be associated with metastatic disease.
机译:随着新基因组平台的出现,有可能对与疾病的特定亚类相关的基因组概况进行数据挖掘。许多小组致力于鉴定与这些亚类相关的基因。较少的小组将这一分析进行了进一步的阶段来确定生物分子之间的潜在关联,以确定与给定条件(称为相互作用组)相关的假设推断的生物相互作用网络(例如基因调控网络)。在这里,我们介绍了一种基于人工神经网络的方法,该方法使用反向传播算法,通过迭代地预测每个基因与其他基因的表达水平(相对于与乳腺癌中转移风险相关的基因)来探索假设推断途径中的基因之间的关联基于公开可用的van't Veer数据集[1]。我们证明,我们可以鉴定与转移系统中其他基因密切相关的基因子集。这些相互作用中的许多相互作用强烈地代表了可能的生物学相互作用,并且已知相互作用的基因与转移性疾病有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号