首页> 外文会议>Automata, languages and programming >A Polynomial Time Approximation Scheme for Euclidean Minimum Cost k-Connectivity
【24h】

A Polynomial Time Approximation Scheme for Euclidean Minimum Cost k-Connectivity

机译:欧几里得最小代价k-连通性的多项式时间近似方案

获取原文
获取原文并翻译 | 示例

摘要

We present polynomial-time approximation schemes for the problem of finding a minimum-cost k-connected Euclidean graph on a finite point set in R~d. The cost of an edge in such a graph is equal to the Euclidean distance between its endpoints. Our schemes use Steiner points. For every given c > 1 and a set S of n points in R~d, a randomized version of our scheme finds an Euclidean graph on a superset of 5 which is k-vertex (or k-edge) connected with respect to S, and whose cost is with probability 1/2 within (1 +1/c ) of the minimum cost of a k-vertex (or k-edge) connected Euclidean graph on 5, in time n · (logn)(O(c(dk)~1/2)~(d-1) · 2((O(c(dk)~(1/2))~(d-1)~1. We can derandomize the scheme by increasing the running time by a factor O(n). We also observe that the time cost of the derandomization of the PTA schemes for Euclidean optimization problems in K~d derived by Arora can be decreased by a multiplicative factor of Ω(n~(d-1)).
机译:对于在R〜d中设置的有限点上找到最小成本k-连通欧氏图的问题,我们提出了多项式时间近似方案。在这样的图中,一条边的成本等于其端点之间的欧几里得距离。我们的方案使用Steiner点。对于每个给定的c> 1和R中的n个点的集合S,我们的方案的随机版本在5的超集上找到一个欧几里得图,该超集是相对于S的k顶点(或k边),且其成本在时间n·(logn)(O(c( dk)〜1/2)〜(d-1)·2((O(c(dk)〜(1/2))〜(d-1)〜1。我们可以通过增加运行时间来使方案去随机化。我们还观察到,可以通过乘数Ω(n〜(d-1))来减少Arora推导的K〜d中用于欧几里德优化问题的PTA方案的去随机化的时间成本。 。

著录项

  • 来源
  • 会议地点 Aalborg(DK);Aalborg(DK)
  • 作者

    Artur Czumaj; Andrzej Lingas;

  • 作者单位

    Heinz Nixdorf Institute and Department of Mathematics Computer Science University of Paderborn, D-33095 Paderborn, Germany;

    Department of Computer Science, Lund University Box 118, S-22100 Lund, Sweden;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算机软件;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号