【24h】

Guiding Motif Discovery by Iterative Pattern Refinement

机译:通过迭代模式细化指导主题发现

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we demonstrate that the performance of a motif discovery algorithm can be significantly improved by embedding it into a novel framework that effectively guides the motif discovery process. The framework is also general enough to allow any statistical motif discovery algorithm to be used. Motivation for this research comes from the fact that the statistical significance of patterns depends on the background probability which is largely determined by input sequences. Our framework guides motif discovery by inputting subsequences to an existing motif discovery algorithm, rather than using entire sequences. Subsequences are determined by motifs discovered using existing motif discovery and search algorithms. Then this technique is iteratively applied until convergence. A starting set of patterns is discovered by a simple, but effective pattern set generation algorithm. Our framework was implemented using MEME and MAST and tested with 108 PROSITE patterns. The result demonstrates that our framework significantly improves the performance of MEME.
机译:在本文中,我们证明了将主题发现算法嵌入到有效指导主题发现过程的新型框架中,可以显着提高其性能。该框架也足够通用,可以使用任何统计主题发现算法。这项研究的动机来自这样一个事实,即模式的统计意义取决于背景概率,而背景概率在很大程度上取决于输入序列。我们的框架通过将子序列输入到现有的主题发现算法而不是使用整个序列来指导主题发现。子序列由使用现有主题发现和搜索算法发现的主题确定。然后迭代地应用此技术,直到收敛为止。通过简单但有效的模式集生成算法可以发现模式的起始集。我们的框架是使用MEME和MAST实施的,并使用108种PROSITE模式进行了测试。结果表明,我们的框架显着提高了MEME的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号