首页> 外文会议>Artificial neural networks in pattern recognition >Maximum Echo-State-Likelihood Networks for Emotion Recognition
【24h】

Maximum Echo-State-Likelihood Networks for Emotion Recognition

机译:用于情感识别的最大回声状态相似性网络

获取原文
获取原文并翻译 | 示例

摘要

Emotion recognition is a relevant task in human-computer interaction. Several pattern recognition and machine learning techniques have been applied so far in order to assign input audio and/or video sequences to specific emotional classes. This paper introduces a novel approach to the problem, suitable also to more generic sequence recognition tasks. The approach relies on the combination of the recurrent reservoir of an echo state network with a connectionist density estimation module. The reservoir realizes an encoding of the input sequences into a fixed-dimensionality pattern of neuron activations. The density estimator, consisting of a constrained radial basis functions network, evaluates the likelihood of the echo state given the input. Unsupervised training is accomplished within a maximum-likelihood framework. The architecture can then be used for estimating class-conditional probabilities in order to carry out emotion classification within a Bayesian setup. Preliminary experiments in emotion recognition from speech signals from the WaSeP? dataset show that the proposed approach is effective, and it may outperform state-of-the-art classifiers.
机译:情感识别是人机交互中的一项相关任务。迄今为止,已经应用了几种模式识别和机器学习技术,以便将输入的音频和/或视频序列分配给特定的情感类别。本文介绍了一种新颖的方法来解决该问题,也适用于更通用的序列识别任务。该方法依赖于回声状态网络的循环存储库和连接密度估计模块的组合。该存储库实现了将输入序列编码为神经元激活的固定维模式。由约束的径向基函数网络组成的密度估计器在给定输入的情况下评估回波状态的可能性。无监督训练是在最大可能性框架内完成的。然后,该体系结构可以用于估计类条件概率,以便在贝叶斯设置内执行情感分类。从WaSeP?的语音信号进行情感识别的初步实验。数据集表明,所提出的方法是有效的,并且可能优于最新的分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号