首页> 外文期刊>Personal and Ubiquitous Computing >Multimodal emotion recognition algorithm based on edge network emotion element compensation and data fusion
【24h】

Multimodal emotion recognition algorithm based on edge network emotion element compensation and data fusion

机译:基于边缘网络情感元素补偿和数据融合的多模式情感识别算法

获取原文
获取原文并翻译 | 示例

摘要

The data feature set of emotion recognition based on complex network has the characteristics of complex redundant information, difficult recognition and lost data, so it will cause great interference to the emotion feature of speech or image recognition. In order to solve the above problems, this paper studies the multi-modal emotion recognition algorithm based on emotion element compensation in the background of streaming media communication in edge network. Firstly, an edge streaming media network is designed to transfer the traditional server-centric transmission tasks to edge nodes. The architecture can transform complex network problems into edge nodes and user side problems. Secondly, the multi-modal parallel training is realized by using the cooperative combination of weights equalization, and the reasoning of nonlinear mapping is mapped to a better emotional data fusion relationship. Then, from the point of view of non-linearity and uncertainty of different types of emotional data samples in the training subset, emotional recognition data compensation evolves into emotional element compensation, which is convenient for qualitative analysis and optimal decision-making. Finally, the simulation results show that the proposed multi-modal emotion recognition algorithm can improve the recognition rate by 3.5%, save the average response time by 5.7% and save the average number of iterations per unit time by 1.35 times.
机译:基于复杂网络的情感识别数据特征集具有复杂的冗余信息,难度识别和丢失数据的特点,因此它会对语音或图像识别的情感特征造成极大的干扰。为了解决上述问题,本文研究了边缘网络中流媒体通信背景中的情感元素补偿的多模态情绪识别算法。首先,设计边缘流媒体网络以将传统的服务器的传输任务传输到边缘节点。该体系结构可以将复杂的网络问题转换为边缘节点和用户侧问题。其次,通过使用权重均衡的协同组合来实现多模模式并行训练,并且非线性映射的推理被映射到更好的情绪数据融合关系。然后,从训练子集中的非线性和不同类型情绪数据样本的不确定度,情绪识别数据补偿进入情绪元素补偿,这方便定性分析和最佳决策。最后,仿真结果表明,所提出的多模态情绪识别算法可以将识别率提高3.5%,将平均响应时间保存5.7%,并将每单位时间的平均迭代次数保存为1.35倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号