首页> 外文会议>Artificial neural networks in pattern recognition >Bayesian Learning of Generalized Gaussian Mixture Models on Biomedical Images
【24h】

Bayesian Learning of Generalized Gaussian Mixture Models on Biomedical Images

机译:生物医学图像上广义高斯混合模型的贝叶斯学习

获取原文
获取原文并翻译 | 示例

摘要

In the context of biomedical image processing and bioinfor- matics, an important problem is the development of accurate models for image segmentation and DNA spot detection. In this paper we propose a highly efficient unsupervised Bayesian algorithm for biomedical image segmentation and spot detection of cDNA microarray images, based on generalized Gaussian mixture models. Our work is motivated by the fact that biomedical and cDNA microarray images both contain non- Gaussian characteristics, impossible to model using rigid distributions like the Gaussian. Generalized Gaussian mixture models are robust in the presence of noise and outliers and are more flexible to adapt the shape of data.
机译:在生物医学图像处理和生物信息学的背景下,一个重要的问题是开发用于图像分割和DNA点检测的精确模型。在本文中,我们提出了一种基于广义高斯混合模型的高效无监督贝叶斯算法,用于生物医学图像分割和cDNA微阵列图像点检测。生物医学和cDNA微阵列图像均包含非高斯特性,因此无法使用像高斯这样的刚性分布进行建模,因此激发了我们的工作动力。广义高斯混合模型在存在噪声和离群值的情况下具有鲁棒性,并且更灵活地适应数据的形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号