首页> 外文学位 >Generalized Gaussian process models with Bayesian variable selection.
【24h】

Generalized Gaussian process models with Bayesian variable selection.

机译:具有贝叶斯变量选择的广义高斯过程模型。

获取原文
获取原文并翻译 | 示例

摘要

This research proposes a unified Gaussian process modeling approach that extends to data from the exponential dispersion family and survival data. Our specific interest is in the analysis of datasets with predictors possessing an a priori unknown form of possibly non-linear associations to the response. We incorporate Gaussian processes in a generalized linear model framework to allow a flexible non-parametric response surface function of the predictors. We term these novel classes "generalized Gaussian process models". We consider continuous, categorical and count responses and extend to survival outcomes. Next, we focus on the problem of selecting variables from a set of possible predictors and construct a general framework that employs mixture priors and a Metropolis-Hastings sampling scheme for the selection of the predictors with joint posterior exploration of the model and associated parameter spaces.;We build upon this framework by first enumerating a scheme to improve efficiency of posterior sampling. In particular, we compare the computational performance of the Metropolis-Hastings sampling scheme with a newer Metropolis-within-Gibbs algorithm. The new construction achieves a substantial improvement in computational efficiency while simultaneously reducing false positives. Next, leverage this efficient scheme to investigate selection methods for addressing more complex response surfaces, particularly under a high dimensional covariate space.;Finally, we employ spiked Dirichlet process (DP) prior constructions over set partitions containing covariates. Our approach results in a nonparametric treatment of the distribution of the covariance parameters of the GP covariance matrix that in turn induces a clustering of the covariates. We evaluate two prior constructions: The first employs a mixture of a point-mass and a continuous distribution as the centering distribution for the DP prior, therefore clustering all covariates. The second one employs a mixture of a spike and a DP prior with a continuous distribution as the centering distribution, which induces clustering of the selected covariates only. DP models borrow information across covariates through model-based clustering, achieving sharper variable selection and prediction than what obtained using mixture priors alone. We demonstrate that the former prior construction favors "sparsity", while the latter is computationally more efficient.
机译:这项研究提出了一种统一的高斯过程建模方法,该方法可以扩展到指数弥散族和生存数据中的数据。我们特别感兴趣的是分析具有预测变量的数据集,这些预测变量具有与响应之间可能存在非线性关联的先验未知形式。我们将高斯过程纳入广义线性模型框架中,以允许预测变量具有灵活的非参数响应面函数。我们将这些新颖的类称为“广义高斯过程模型”。我们考虑连续的,分类的和计数的响应,并扩展到生存结果。接下来,我们着重于从一组可能的预测变量中选择变量的问题,并构建一个使用混合先验和Metropolis-Hastings抽样方案来选择预测变量的通用框架,并对模型和相关参数空间进行联合后验。 ;我们在此框架的基础上首先列举了一种提高后验采样效率的方案。特别是,我们将Metropolis-Hastings采样方案的计算性能与更新的Metropolis-in-Gibbs算法进行了比较。新的结构大大提高了计算效率,同时减少了误报。接下来,利用这种有效的方案来研究用于处理更复杂的响应面的选择方法,尤其是在高维协变量空间下。最后,我们在包含协变量的集合分区上采用尖峰Dirichlet过程(DP)在先构造。我们的方法导致对GP协方差矩阵的协方差参数的分布进行非参数处理,从而引起协变量的聚类。我们评估了两个先验结构:首先,它采用点质量和连续分布的混合作为DP先验的中心分布,因此将所有协变量聚类。第二种方法是在连续分布之前将尖峰和DP的混合作为对中分布,这仅导致所选协变量的聚类。 DP模型通过基于模型的聚类在协变量中借用信息,与仅使用混合先验获得的信息相比,实现了更清晰的变量选择和预测。我们证明,前一种先验构造有利于“稀疏”,而后者在计算上更有效。

著录项

  • 作者

    Savitsky, Terrance D.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Statistics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号