首页> 外文会议>Artificial neural networks in pattern recognition >Automatic Bridge Crack Detection-A Texture Analysis-Based Approach
【24h】

Automatic Bridge Crack Detection-A Texture Analysis-Based Approach

机译:自动桥梁裂缝检测-一种基于纹理分析的方法

获取原文
获取原文并翻译 | 示例

摘要

To date, identifying cracks in bridges and determining bridge conditions primarily involve manual labour. Bridge inspection by human experts has some drawbacks such as the inability to physically examine all parts of the bridge, sole dependency on the expert knowledge of the bridge inspector. Moreover it requires proper training of the human resource and overall it is not cost effective. This article proposes an automatic bridge inspection approach exploiting wavelet-based image features along with Support Vector Machines for automatic detection of cracks in bridge images. A two-stage approach is followed, where in the first stage a decision is made as whether an image should undergo a pre-processing step (depending on image characteristics), and later in the second stage, wavelet features are extracted from the image using a sliding window-based technique. We obtained an overall accuracy of 92.11% while conducting experiments even on noisy and complex bridge images.
机译:迄今为止,识别桥梁裂缝和确定桥梁状况主要涉及人工劳动。由人类专家进行的桥梁检查具有一些缺点,例如无法物理检查桥梁的所有部分,仅依赖于桥梁检查员的专业知识。此外,它需要对人力资源进行适当的培训,总的来说,这样做并不划算。本文提出了一种自动桥梁检测方法,该方法利用基于小波的图像特征以及支持向量机来自动检测桥梁图像中的裂缝。遵循两阶段方法,在第一阶段中,决定是否应对图像进行预处理(取决于图像特征),然后在第二阶段中,使用图像从图像中提取小波特征。基于滑动窗口的技术。即使在嘈杂和复杂的桥梁图像上进行实验,我们也获得了92.11%的总体准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号