首页> 外文OA文献 >Automatic Bridge Crack Detection – A Texture Analysis-Based Approach
【2h】

Automatic Bridge Crack Detection – A Texture Analysis-Based Approach

机译:自动桥接裂纹检测 - 基于纹理分析的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To date, identifying cracks in bridges and determining bridge conditions primarily involve manual labour. Bridge inspection by human experts has some drawbacks such as the inability to physically examine all parts of the bridge, sole dependency on the expert knowledge of the bridge inspector. Moreover it requires proper training of the human resource and overall it is not cost effective. This article proposes an automatic bridge inspection approach exploiting wavelet-based image features along with Support Vector Machines for automatic detection of cracks in bridge images. A two-stage approach is followed, where in the first stage a decision is made as whether an image should undergo a pre-processing step (depending on image characteristics), and later in the second stage, wavelet features are extracted from the image using a sliding window-based technique. We obtained an overall accuracy of 92.11% while conducting experiments even on noisy and complex bridge images.
机译:迄今为止,识别桥梁中的裂缝,并确定桥梁条件主要涉及体力劳动。人类专家的桥梁检查有一些缺点,如无法物理检查桥梁的所有部分,唯一依赖桥梁检查员的专业知识。此外,它需要适当培训人力资源,总体而言,这并不成本效益。本文提出了一种自动桥接检测方法,利用基于小波的图像特征以及支持向量机,用于在桥梁图像中自动检测裂缝。遵循两阶段方法,其中在第一阶段中,作为图像是否应该经历预处理步骤(取决于图像特征),稍后在第二阶段中,从图像中提取小波特征基于滑动窗口的技术。在嘈杂和复杂的桥牌图像中,我们在进行实验时获得了92.11%的整体准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号