首页> 外文会议>Artificial intelligence: Theories, models and applications >Towards the Discovery of Reliable Biomarkers from Gene-Expression Profiles: An Iterative Constraint Satisfaction Learning Approach
【24h】

Towards the Discovery of Reliable Biomarkers from Gene-Expression Profiles: An Iterative Constraint Satisfaction Learning Approach

机译:从基因表达谱中寻找可靠的生物标志物:迭代约束满足学习方法

获取原文
获取原文并翻译 | 示例

摘要

The article demonstrates the use of Multiple Iterative Constraint Satisfaction Learning (MICSL) process in inducing gene-markers from microarray gene-expression profiles. MICSL adopts a supervised learning from examples framework and proceeds by optimizing an evolving zero-one optimization model with constraints. After a data discretization pre-processing step, each example sample is transformed into a corresponding constraint. Extra constraints are added to guarantee mutual-exclusiveness between gene (feature) and assigned phenotype (class) values. The objective function corresponds to the learning outcome and strives to minimize use of genes by following an iterative constraint-satisfaction mode that finds solutions of increasing complexity. Standard (c4.5-like) pruning and rule-simplification processes are also incorporated. MICSL is applied on several well-known microarray datasets and exhibits very good performance that outperforms other established algorithms, providing evidence that the approach is suited for the discovery of biomarkers from microarray experiments. Implications of the approach in the biomedical informatics domain are also discussed.
机译:本文演示了使用多重迭代约束满足学习(MICSL)过程从微阵列基因表达谱中诱导基因标志物的方法。 MICSL采用了从示例框架中进行监督的学习,并通过优化具有约束的不断发展的零一优化模型来进行。在数据离散化预处理步骤之后,每个示例样本都将转换为相应的约束。添加了额外的约束条件,以确保基因(特征)和分配的表型(类别)值之间的互斥性。目标函数对应于学习结果,并通过遵循发现越来越复杂的解决方案的迭代约束满足模式,努力最小化基因的使用。还包括标准(类似于c4.5)的修剪和规则简化过程。 MICSL被应用于几个著名的微阵列数据集,并且表现出非常好的性能,优于其他已建立的算法,这提供了该方法适合从微阵列实验中发现生物标记物的证据。还讨论了该方法在生物医学信息学领域的意义。

著录项

  • 来源
  • 会议地点 Athens(GR);Athens(GR)
  • 作者单位

    Institute of Computer Science, Foundation for Research Technology - Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 700 13 Heraklion, Crete, Greece;

    Institute of Computer Science, Foundation for Research Technology - Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 700 13 Heraklion, Crete, Greece,Technical University of Crete, Department of Production and Management, Management Systems Laboratory, Chania 73100, Greece;

    Institute of Computer Science, Foundation for Research Technology - Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 700 13 Heraklion, Crete, Greece,Technical University of Crete, Department of Production and Management, Management Systems Laboratory, Chania 73100, Greece;

    Institute of Computer Science, Foundation for Research Technology - Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 700 13 Heraklion, Crete, Greece,Technical University of Crete, Department of Production and Management, Management Systems Laboratory, Chania 73100, Greece;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人工智能理论;
  • 关键词

    bioinformatics; constraint satisfaction; data mining; knowledge discovery; microarrays;

    机译:生物信息学约束满足数据挖掘;知识发现;微阵列;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号