首页> 外文会议>Artificial intelligence: Theories, models and applications >Feature Selection for Improved Phone Duration Modeling of Greek Emotional Speech
【24h】

Feature Selection for Improved Phone Duration Modeling of Greek Emotional Speech

机译:改进的希腊情绪语音电话时长建模功能选择

获取原文
获取原文并翻译 | 示例

摘要

In the present work we address the problem of phone duration modeling for the needs of emotional speech synthesis. Specifically, relying on ten well known machine learning techniques, we investigate the practical usefulness of two feature selection techniques, namely the Relief and the Correlation-based Feature Selection (CFS) algorithms, for improving the accuracy of phone duration modeling. The feature selection is performed over a large set of phonetic, morphologic and syntactic features. In the experiments, we employed phone duration models, based on decision trees, linear regression, lazy-learning algorithms and meta-learning algorithms, trained on a Modern Greek speech database of emotional speech, which consists of five categories of emotional speech: anger, fear, joy, neutral, sadness. The experimental results demonstrated that feature selection significantly improves the accuracy of phone duration modeling regardless of the type of machine learning algorithm used for phone duration modeling.
机译:在当前的工作中,我们针对情感语音合成的需求解决了电话持续时间建模的问题。具体而言,我们依靠十种众所周知的机器学习技术,研究了两种特征选择技术(即“救济”和“基于相关的特征选择”(CFS)算法)的实用性,以提高电话持续时间建模的准确性。特征选择是在大量的语音,形态和句法特征上执行的。在实验中,我们采用了基于决策树,线性回归,懒惰学习算法和元学习算法的电话时长模型,并在现代希腊语语音语音数据库中对其进行了训练,该数据库包括五种语音语音:愤怒,恐惧,喜悦,中立,悲伤。实验结果表明,无论用于电话持续时间建模的机器学习算法的类型如何,特征选择都会显着提高电话持续时间建模的准确性。

著录项

  • 来源
  • 会议地点 Athens(GR);Athens(GR)
  • 作者单位

    Artificial Intelligence Group, Wire Communications Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion-Patras 26500, Greece;

    Artificial Intelligence Group, Wire Communications Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion-Patras 26500, Greece;

    Artificial Intelligence Group, Wire Communications Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion-Patras 26500, Greece;

    Artificial Intelligence Group, Wire Communications Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion-Patras 26500, Greece;

    Artificial Intelligence Group, Wire Communications Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion-Patras 26500, Greece;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人工智能理论;
  • 关键词

    phone duration modeling; feature selection; emotional speech;

    机译:电话持续时间建模;特征选择;情感言论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号