首页> 外文会议>Artificial Intelligence: Theories, Models and Applications >Item-Based Filtering and Semantic Networks for Personalized Web Content Adaptation in E-Commerce
【24h】

Item-Based Filtering and Semantic Networks for Personalized Web Content Adaptation in E-Commerce

机译:电子商务中个性化Web内容自适应的基于项目的过滤和语义网络

获取原文
获取原文并翻译 | 示例

摘要

Personalised web content adaptation systems are critical constituents of successful e-commerce applications. These systems aim at the automatic identification, composition and presentation of content to users based on a model about their preferences and the context of interaction. The paper critically reviews related work in the field and presents an integrated approach for the design of personalization and web content adaptation in e-commerce that places emphasis on item-based collaborative filtering and on short-term, dynamic user models represented as semantic networks. The proposed approach for personalised web content adaptation can provide different types of interesting recommendations taking into account the current user interaction context in a computationally inexpensive way. It is also respectful of user personal information and unobtrusive with respect to user feedback.
机译:个性化的Web内容适应系统是成功的电子商务应用程序的关键组成部分。这些系统旨在基于关于用户喜好和交互上下文的模型,自动将内容识别,合成和呈现给用户。本文严格地回顾了该领域的相关工作,并提出了一种用于电子商务中个性化和Web内容自适应设计的集成方法,该方法重点放在基于项目的协作过滤和以语义网络表示的短期动态用户模型上。考虑到当前用户交互上下文,所提出的用于个性化web内容适配的方法可以以计算上廉价的方式提供不同类型的有趣推荐。它还尊重用户的个人信息,并且对用户的反馈意见不容置疑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号