首页> 外文期刊>Expert systems with applications >Incentivized provision of metadata, semantic reasoning and time-driven filtering: Making a puzzle of personalized e-commerce
【24h】

Incentivized provision of metadata, semantic reasoning and time-driven filtering: Making a puzzle of personalized e-commerce

机译:激励性地提供元数据,语义推理和时间驱动的过滤:使个性化电子商务成为难题

获取原文
获取原文并翻译 | 示例

摘要

e-Commerce recommender systems select potentially interesting products for users by looking at their purchase histories and preferences. In order to compare the available products against those included in the user's profile, semantics-based recommendation strategies consider metadata annotations that describe their main attributes. Besides, to ensure successful suggestions of products, these strategies adapt the recommendations as the user's preferences evolve over time. Traditional approaches face two limitations related to the aforementioned features. First, product providers are not typically willing to take on the tedious task of annotating accurately a huge diversity of commercial items, thus leading to a substantial impoverishment of the personalization quality. Second, the adaptation process of the recommendations misses the time elapsed since the user has bought an item, which is an essential parameter that affects differently to each purchased product. This results in some pointless recommendations, e.g. including regularly items that the users are only willing to buy sporadically. In order to fight both limitations, we propose a personalized e-commerce system with two main features. On the one hand, we incentivize the users to provide high-quality metadata for commercial products; on the other, we explore a strategy that offers time-aware recommendations by combining semantic reasoning about these annotations with item-specific time functions. The synergetic effects derived from this combination lead to suggestions adapted to the particular needs of the users at any time. This approach has been experimentally validated with a set of users who accessed our personalized e-commerce system through a range of fixed and handheld consumer devices.
机译:电子商务推荐系统通过查看用户的购买历史和偏好来为用户选择潜在的有趣产品。为了将可用产品与用户配置文件中包含的产品进行比较,基于语义的推荐策略考虑了描述其主要属性的元数据注释。此外,为了确保成功提出产品建议,这些策略会随着用户偏好的发展而调整建议。传统方法面临与前述特征有关的两个限制。首先,产品提供者通常不愿意承担繁琐的任务,即准确地注释大量的商业商品,从而导致个性化质量的显着下降。其次,建议的修改过程会错过用户购买商品以来的时间,这是一个必不可少的参数,对每个购买的商品都有不同的影响。这导致一些毫无意义的建议,例如包括用户仅偶尔购买的常规商品。为了克服这两个限制,我们提出了一个具有两个主要功能的个性化电子商务系统。一方面,我们激励用户为商业产品提供高质量的元数据;另一方面,我们探索了一种策略,通过将有关这些批注的语义推理与特定于项目的时间函数相结合来提供时间感知的建议。从这种组合中产生的协同效应可在任何时候产生适应用户特定需求的建议。该方法已通过一组用户的实验验证,这些用户通过一系列固定和手持式消费类设备访问了我们的个性化电子商务系统。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号