首页> 外文会议>Artificial intelligence research and development >Probabilistic Appearance-based Mapping and Localization using the Feature Stability Histogram
【24h】

Probabilistic Appearance-based Mapping and Localization using the Feature Stability Histogram

机译:使用特征稳定性直方图的基于概率外观的映射和定位

获取原文
获取原文并翻译 | 示例

摘要

Appearance-based methods for mapping and localization have gained increasing attention in recent years. The strength of these models lies in their ability to represent the environment through high-level image features. However, the environment illumination, occlusions and walking people have a negative impact on these approaches. This paper presents a probabilistic appearance-based mapping and localization approach which uses the Feature Stability Histogram to update the environment appearance continuously and extract the more stable features in the environment. Our proposed method uses these stable features as successive appearance measurements to update the posterior probabilities incrementally on a topological map using a Rao-Blackwellized particle filter. Our algorithm considers omnidirectional images and laser data as measure of the environment appearance. Our approach was evaluated on a robot in a dataset collected along various seasons and time of day.
机译:近年来,基于外观的映射和定位方法越来越受到关注。这些模型的优势在于它们能够通过高级图像功能表示环境。但是,环境照明,遮挡物和步行的人会对这些方法产生负面影响。本文提出了一种基于概率外观的映射和定位方法,该方法使用特征稳定性直方图连续更新环境外观并提取环境中更稳定的特征。我们提出的方法使用这些稳定特征作为连续的外观测量,以使用Rao-Blackwellized粒子过滤器在拓扑图上递增地更新后验概率。我们的算法将全向图像和激光数据视为环境外观的度量。我们的方法在一个机器人上进行了评估,该机器人是在不同季节和一天中收集的数据集中的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号