首页> 外文会议>Applications of digital image processing XXXV. >Video-based face identification using unconstrained non-linear composite filters
【24h】

Video-based face identification using unconstrained non-linear composite filters

机译:使用无约束非线性复合滤波器的基于视频的面部识别

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the face identification task in video sequences where the individual’s face presents variations;such as expressions, pose, scale, shadow/lighting and occlusion. The principles of Synthetic DiscriminantFunctions (SDF) and K-Law filters are used to design an adaptive unconstrained correlation filter (AUNCF). Wedeveloped a face tracking algorithm which together with a face recognition algorithm were carefully integratedinto a video-based face identification method. First, a manually selected face in the first video frame is identified.Then, in order to build an initial correlation filter, the selected face is distorted so that it generates a training set.Finally, the face tracking task is performed using the initial correlation filter which is updated through the videosequence. The efficiency of the proposed method is shown by experiments on video sequences, where differentfacial variations are presented. The proposed method correctly identifies and tracks the face under observationon the tested video sequences.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
机译:本文考虑了视频序列中的人脸识别任务,其中个人的脸部表现出变化;例如表情,姿势,比例,阴影/照明和遮挡。综合判别函数(SDF)和K-Law滤波器的原理用于设计自适应无约束相关滤波器(AUNCF)。我们开发了一种面部跟踪算法,将其与面部识别算法一起精心集成到基于视频的面部识别方法中。首先,在第一个视频帧中识别出手动选择的脸部,然后为了构建初始相关性过滤器,将选择的脸部变形以使其生成训练集。最后,使用初始相关性执行脸部跟踪任务通过videoequence更新的过滤器。通过在视频序列上的实验表明了所提出方法的效率,其中介绍了不同的面部变化。所提出的方法可正确识别并跟踪在被测视频序列下进行观察的脸部。©(2012)COPYRIGHT光电仪器工程师协会(SPIE)。摘要的下载仅允许个人使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号