首页> 外文会议>Applications of Digital Image Processing XXIX >A hybrid spatiotemporal and Hough-based motion estimation approach applied to magnetic resonance cardiac images
【24h】

A hybrid spatiotemporal and Hough-based motion estimation approach applied to magnetic resonance cardiac images

机译:基于时空和基于霍夫的混合运动估计方法应用于磁共振心脏图像

获取原文
获取原文并翻译 | 示例

摘要

Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation to the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach, more specifically on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The later is a well-known line and shape detection method very robust against incomplete data and noise. The rationale of using the HT in this context is because it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results with synthetic sequences are compared against an implementation of the variational technique for local and global motion estimation, where it is shown that the results obtained here are accurate and robust to noise degradations. Real cardiac magnetic resonance images have been tested and evaluated with the current method.
机译:心肌运动分析和量化对于分析收缩性心脏异常至关重要,并且可能是冠状动脉疾病的症状。处理图像序列中的一个基本问题是光流的计算,这是对实际图像运动的近似。本文提出了一种新的光流估计算法,该算法基于时空频率(STF)方法,尤其是基于运动序列的Wigner-Ville分布(WVD)和Hough变换(HT)的计算。后者是一种众所周知的线条和形状检测方法,对不完整的数据和噪声非常健壮。在这种情况下使用HT的基本原理是因为它提供了STF表示中位移场的值。另外,已经实施了基于高斯混合的概率方法,以提高运动检测的准确性。将具有合成序列的实验结果与用于局​​部和全局运动估计的变分技术的实现方式进行比较,结果表明,此处获得的结果准确且对噪声降级具有鲁棒性。实际的心脏磁共振图像已通过当前方法进行了测试和评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号