首页> 外文会议>Algorithms and architectures for parallel processing >Feature Extraction of Dichotomous Equipment Based on Non-intrusive Load Monitoring and Decomposition
【24h】

Feature Extraction of Dichotomous Equipment Based on Non-intrusive Load Monitoring and Decomposition

机译:基于非侵入式负荷监测与分解的二分设备特征提取

获取原文
获取原文并翻译 | 示例

摘要

Non-invasive load monitoring and decomposition technology plays a very important role in the process of intelligent power grid construction nowadays. This paper explores the feature extraction of transient and steady state by using the data of known binary single electrical equipment state. Regarding to the steady state characteristic parameter extraction, the method of Fourier series decomposition is used to calculate the average active power and reactive power, and then make a parameter table of steady state power and later analyze waveform characteristics. Regarding to transient characteristic parameters extraction, Mallat algorithm is used to make an extraction of the disturbance waveform, with its high frequency coefficient as the difference between the transient and steady-state characteristic value, so as to estimate the duration of the disturbance directly. By extracting the two-state characteristics, this paper explores the load marks that can be used to distinguish different devices. More over, this article combines with many measured data to verify the results, which has made a satisfy.
机译:无损负荷监测和分解技术在当今智能电网建设过程中起着非常重要的作用。本文利用已知的二进制单电气设备状态数据探索瞬态和稳态的特征提取。对于稳态特征参数的提取,采用傅里叶级数分解的方法,计算出平均有功功率和无功功率,然后制作出稳态功率参数表,并对波形特性进行分析。对于瞬态特征参数的提取,采用Mallat算法提取干扰波形,其高频系数为瞬态和稳态特征值之差,从而直接估计干扰的持续时间。通过提取两种状态的特征,本文探索了可用于区分不同器件的负载标记。此外,本文还结合了许多实测数据来验证结果,这已经令人满意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号