首页> 外文学位 >Non-intrusive monitoring of electrical loads based on switching transient voltage analysis: Signal acquisition and features extraction.
【24h】

Non-intrusive monitoring of electrical loads based on switching transient voltage analysis: Signal acquisition and features extraction.

机译:基于开关瞬态电压分析的非侵入式电气负载监控:信号采集和特征提取。

获取原文
获取原文并翻译 | 示例

摘要

Non-Intrusive Load Monitoring (NILM) based on switching transient voltages was introduced in the last decade as part of an initiative to develop easy-to-install NILM systems with minimum number of sensors. The voltage transients induced by the connection or disconnection of different appliances propagate through the electrical wiring and can be measured at one point in the house. These transients can be used to identify the appliance in operation and the state of its switch. The existing solution makes use of a single Notch analog filter to remove the 60 Hz component before the voltage signal is digitally acquired. The transient is detected through the variation in the Short Time Fourier Transform (STFT) continuously computed on 1microsecond adjacent time windows. Thereafter, the duration of the transient and the averaged magnitude of the STFT form a feature vector that is classified using a Support Vector Machine (SVM) model. This dissertation proposes to improve this solution by reducing the computation burden to detect the transients, by including multi-Notch digital filtering to remove not only the 60 Hz component but also the harmonic interference, and by using Wavelet transform methods to compute a reduced feature vector to classify the switching transients. The Envelope or Mask Trigger detection method is examined in this dissertation and presented as a suitable trade-off between hardware complexity, computation burden and detection accuracy. Once the transients are detected and recorded, a cascade of discrete IIR second order Notch filters is designed to remove the power harmonic interference. This filtering is highly affected by the natural response of the filters. The state of the art methods to suppress the natural response are effective but at the expense of considerable computation time or degradation of the frequency response. A novel natural response suppression method based on projecting the zero state response is proposed in this dissertation. This method is demonstrated to overcome the drawbacks of the previous techniques on both simulated and measured transients. The filtering of the power harmonic interference is addressed by a twofold solution. The first part is to use a cascade of independently designed second order Notch filters. The exclusive dependence of the magnitude of the poles on the Notch bandwidth is stated and used to derive boundaries for the bandwidth and the natural response duration specifications to design second order Notch filters. On the other hand, if the degradation of the cascade frequency response is not tolerable, an Infinite Impulse Response (IIR) multi-Notch filter design is recommended. The existing design methods does not guarantee unity transmission between Notch frequencies along with exact compliance with either bandwidth or cut-off frequency specifications. In this dissertation, a new flexible method to design IIR multi-Notch filters based on polynomial pole placement is demonstrated. The filter is designed by determining a shape factor and the local maxima positions of the frequency response magnitude. The shape factor can be computed to comply with either cut-off frequencies or bandwidths specifications at any gain. The designed filter is stable, ripple-free, and can be implemented using an all-pass filter. The optimal selection of the shape factor and the local maxima positions by using Particle Swarm Optimization (PSO) is demonstrated as well. Finally, the use of Continuous Wavelet Transform (CWT) and Wavelet Packet Transform (WPT) in order to classify, via SVMs, transient voltages is discussed and compared with the previous approach based on STFT. The influence on the classification accuracy of the mother wavelet, the selection of scales or decomposition levels, and the time integration or aggregation methods is discussed and experimentally tested. Two sets of heuristic guidelines to extract features from switching transients by using either CWT or WPT are derived. In the experiments, the CWT and the WPT methods achieve comparable maximum classification accuracies and both outperform the previous methods with considerably shorter feature vectors.
机译:在过去的十年中,基于开关瞬态电压的非侵入式负载监控(NILM)成为开发具有最少传感器数量的易于安装的NILM系统计划的一部分。由不同电器的连接或断开引起的瞬态电压会通过电线传播,并且可以在房屋中的某一点进行测量。这些瞬变可用于识别操作中的设备及其开关的状态。现有的解决方案利用单个陷波模拟滤波器在数字化采集电压信号之前去除60 Hz分量。通过在1微秒相邻时间窗口上连续计算的短时傅立叶变换(STFT)中的变化来检测瞬态。此后,STFT的瞬态持续时间和平均幅度形成使用支持向量机(SVM)模型进行分类的特征向量。本文提出了通过减少计算检测瞬变的计算负担,包括多陷波数字滤波以不仅去除60 Hz分量,还去除谐波干扰以及通过使用小波变换方法来计算简化的特征向量的方法来改进该解决方案。对开关瞬变进行分类。本文对包络或掩膜触发检测方法进行了研究,提出了在硬件复杂度,计算量和检测精度之间进行权衡的一种折衷方法。一旦检测到瞬态并进行记录,就可以设计一系列级联的IIR二阶陷波滤波器来消除功率谐波干扰。过滤器的自然响应会严重影响这种过滤。抑制自然响应的现有技术方法是有效的,但是以可观的计算时间或频率响应的降低为代价。本文提出了一种基于投影零状态响应的自然响应抑制方法。事实证明,该方法克服了先前技术在模拟和测量瞬态上的缺点。双重解决方案解决了电力谐波干扰的过滤问题。第一部分是使用独立设计的二阶陷波滤波器的级联。陈述了极点幅度对陷波带宽的唯一依赖性,并用于得出带宽的边界和自然响应持续时间规范,以设计二阶陷波滤波器。另一方面,如果无法忍受级联频率响应的下降,则建议采用无限脉冲响应(IIR)多陷波滤波器设计。现有的设计方法不能保证陷波频率之间的统一传输,也不能完全符合带宽或截止频率规格。本文提出了一种基于多项式极点布置的IIR多陷波滤波器设计的灵活方法。通过确定形状因子和频率响应幅度的局部最大值位置来设计滤波器。可以计算形状因数,以符合任何增益下的截止频率或带宽规格。设计的滤波器稳定,无纹波,可以使用全通滤波器实现。还展示了使用粒子群优化(PSO)对形状因子和局部最大值位置的最佳选择。最后,讨论了使用连续小波变换(CWT)和小波包变换(WPT)以便通过SVM对瞬态电压进行分类,并将其与基于STFT的先前方法进行了比较。讨论并试验了对小波母波分类精度,标度或分解级别的选择以及时间积分或聚集方法的影响。导出了两组启发式准则,可以通过使用CWT或WPT从切换​​瞬态中提取特征。在实验中,CWT和WPT方法达到了可比的最大分类精度,并且两者都以相当短的特征向量优于以前的方法。

著录项

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号