首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII pt.2 >Comparison of Minimum Spanning Tree Reordering with Bias-Adjusted Reordering for Lossless Compression of 3D Ultraspectral Sounder Data
【24h】

Comparison of Minimum Spanning Tree Reordering with Bias-Adjusted Reordering for Lossless Compression of 3D Ultraspectral Sounder Data

机译:最小生成树重排序与偏置调整后的重排序对3D超光谱测深仪数据的无损压缩的比较

获取原文
获取原文并翻译 | 示例

摘要

The ultraspectral sounder data features strong correlations in disjoint spectral regions due to the same type of absorbing gases. This paper compares the compression performance of two robust data preprocessing schemes, namely Bias-Adjusted reordering (BAR) and Minimum Spanning Tree (MST) reordering, in the context of entropy coding. Both schemes can take advantage of the strong correlations for achieving higher compression gains. The compression methods consist of the BAR or MST preprocessing schemes followed by linear prediction with context-free or context-based arithmetic coding (AC). Compression experiments on the NASA AIRS ultraspectral sounder data set show that MST without bias-adjustment produces lower compression ratios than BAR and bias-adjusted MST for both context-free and context-based AC. Bias-adjusted MST outperforms BAR for context-free arithmetic coding, whereas BAR outperforms MST for context-based arithmetic coding. BAR with context-based AC yields the highest average compression ratios in comparison to MST with context-free or context-based AC.
机译:由于相同类型的吸收气体,超光谱测深仪数据在不相交的光谱区域具有很强的相关性。本文在熵编码的情况下比较了两种鲁棒的数据预处理方案的压缩性能,即偏置调整重排序(BAR)和最小生成树(MST)重排序。两种方案都可以利用强相关性来获得更高的压缩增益。压缩方法包括BAR或MST预处理方案,然后是具有上下文无关或基于上下文的算术编码(AC)的线性预测。在NASA AIRS超光谱测深仪数据集上进行的压缩实验表明,对于无上下文和基于上下文的AC,没有偏差调整的MST产生的压缩率要低于BAR和经过偏差调整的MST。对于上下文无关的算术编码,偏置调整后的MST优于BAR,而对于上下文上下文的算术编码,BAR优于MST。与使用无上下文或基于上下文的AC的MST相比,基于上下文的AC的BAR产生最高的平均压缩率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号