首页> 外文会议>Algorithms and technologies for multispectral. hyperspectral. and ultraspectral imagery XVI >A Scalable Approach to Modeling Nonlinear Structure in Hyperspectral Imagery and Other High-Dimensional Data Using Manifold Coordinate Representations
【24h】

A Scalable Approach to Modeling Nonlinear Structure in Hyperspectral Imagery and Other High-Dimensional Data Using Manifold Coordinate Representations

机译:使用流形坐标表示法的高光谱图像和其他高维数据非线性结构建模的可扩展方法

获取原文
获取原文并翻译 | 示例

摘要

In the past we have presented a framework for deriving a set of intrinsic manifold coordinates that directly parameterize high-dimensional data, such as that found in hyperspectral imagery. In these previous works, we have described the potential utility of these representations for such diverse problems as land-cover mapping and in-water retrievals such as bathymetry. Because the manifold coordinates are intrinsic, they offer the potential for significant compression of the data, and are furthermore very useful for displaying data structure that can not be seen by linear image processing representations when the data is inherently nonlinear. This is especially true, for example, when the data are known to contain strong nonlinearities, such as in the reflectance data obtained from hyperspectral imaging sensors over the water, where the medium itself is attenuating. These representations are also potentially useful in such applications as anomaly finding. A number of other researchers have looked at different aspects of the manifold coordinate representations such as the best way to exploit these representations through the backend classifier, while others have examined alternative manifold coordinate models. In this paper, we provide an overview of our scalable algorithm for deriving manifold coordinate representations of high-dimensional data such as hyperspectral imagery, describe some of our recent work to improve the local estimation of spectral neighborhood size, and demonstrate the benefits for problems such as anomaly finding.
机译:过去,我们提供了一个框架,用于推导一组直接对高维数据(例如在高光谱图像中找到的数据)进行参数化的固有流形坐标。在这些以前的工作中,我们已经描述了这些表示法对诸如土地覆盖图和水深测量(如测深法)之类的各种问题的潜在实用性。因为流形坐标是固有的,所以它们提供了对数据进行显着压缩的潜力,并且对于显示数据固有地非线性时无法被线性图像处理表示所看到的数据结构非常有用。例如,当已知数据包含强非线性时,例如在从介质本身正在衰减的水上的高光谱成像传感器获得的反射率数据中,尤其如此。这些表示形式在异常发现等应用中也可能有用。许多其他研究人员研究了流形坐标表示的不同方面,例如通过后端分类器利用这些表示的最佳方法,而其他一些研究人员则研究了替代的流形坐标模型。在本文中,我们提供了可扩展算法的概述,该算法可用于获取高光谱数据(如高光谱图像)的流形坐标表示,描述了我们最近进行的一些工作,以改进对光谱邻域大小的局部估计,并展示了解决此类问题的好处作为异常发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号