首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Improved Manifold Coordinate Representations of Large-Scale Hyperspectral Scenes
【24h】

Improved Manifold Coordinate Representations of Large-Scale Hyperspectral Scenes

机译:大型高光谱场景的改进流形坐标表示

获取原文
获取原文并翻译 | 示例

摘要

In recent publications, we have presented a data-driven approach to representing the nonlinear structure of hyperspectral imagery using manifold coordinates. The approach relies on graph methods to derive geodesic distances on the high-dimensional hyperspectral data manifold. From these distances, a set of intrinsic manifold coordinates that parameterizes the data manifold is derived. Scaling the solution relied on divide-conquer-and-merge strategies for the manifold coordinates because of the computational and memory scaling of the geodesic coordinate calculations. In this paper, we improve the scaling performance of isometric mapping (ISOMAP) and achieve full-scene global manifold coordinates while removing artifacts generated by the original methods. The CPU time of the enhanced ISOMAP approach scales as$O(N log^2(N))$, where$N$is the number of samples, while the memory requirement is bounded by$O(Nlog(N))$. Full hyperspectral scenes of$O(10^6)$samples or greater are obtained via a reconstruction algorithm, which allows insertion of large numbers of samples into a representative “backbone” manifold obtained for a smaller but representative set of$O(10^5)$samples. We provide a classification example using a coastal hyperspectral scene to illustrate the approach.
机译:在最近的出版物中,我们已经提出了一种数据驱动的方法,以使用流形坐标表示高光谱图像的非线性结构。该方法依赖于图方法来导出高维高光谱数据流形上的测地距离。从这些距离中,可以得出一组参数化数据流形的固有流形坐标。缩放解决方案依赖于流形坐标的分治与合并策略,因为测地坐标计算的计算和内存缩放。在本文中,我们改善了等轴测图(ISOMAP)的缩放性能,并实现了全场景全局流形坐标,同时消除了原始方法生成的伪像。增强的ISOMAP方法的CPU时间缩放为$ O(N log ^ 2(N))$,其中$ N $是样本数,而内存需求由$ O(Nlog(N))$限制。通过重构算法获得$ O(10 ^ 6)$ samples或更高的完整高光谱场景,该算法允许将大量样品插入为代表性较小的$ O(10 ^ 5)$ samples。我们提供了一个使用沿海高光谱场景的分类示例来说明该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号