首页> 外文学位 >A manifold learning approach to target detection in high-resolution hyperspectral imagery.
【24h】

A manifold learning approach to target detection in high-resolution hyperspectral imagery.

机译:用于高分辨率高光谱图像中目标检测的多种学习方法。

获取原文
获取原文并翻译 | 示例

摘要

Imagery collected from airborne platforms and satellites provide an important medium for remotely analyzing the content in a scene. In particular, the ability to detect a specific material within a scene is of high importance to both civilian and defense applications. This may include identifying "targets" such as vehicles, buildings, or boats. Sensors that process hyperspectral images provide the high-dimensional spectral information necessary to perform such analyses. However, for a d-dimensional hyperspectral image, it is typical for the data to inherently occupy an m-dimensional space, with m d. In the remote sensing community, this has led to a recent increase in the use of manifold learning, which aims to characterize the embedded lower-dimensional, non-linear manifold upon which the hyperspectral data inherently lie. Classic hyperspectral data models include statistical, linear subspace, and linear mixture models, but these can place restrictive assumptions on the distribution of the data; this is particularly true when implementing traditional target detection approaches, and the limitations of these models are well-documented. With manifold learning based approaches, the only assumption is that the data reside on an underlying manifold that can be discretely modeled by a graph. The research presented here focuses on the use of graph theory and manifold learning in hyperspectral imagery. Early work explored various graph-building techniques with application to the background model of the Topological Anomaly Detection (TAD) algorithm, which is a graph theory based approach to anomaly detection. This led towards a focus on target detection, and in the development of a specific graph-based model of the data and subsequent dimensionality reduction using manifold learning. An adaptive graph is built on the data, and then used to implement an adaptive version of locally linear embedding (LLE). We artificially induce a target manifold and incorporate it into the adaptive LLE transformation; the artificial target manifold helps to guide the separation of the target data from the background data in the new, lower-dimensional manifold coordinates. Then, target detection is performed in the manifold space.
机译:从机载平台和卫星收集的图像为远程分析场景中的内容提供了重要的媒介。尤其是,检测场景中特定材料的能力对民用和国防应用都非常重要。这可以包括识别“目标”,例如车辆,建筑物或船。处理高光谱图像的传感器提供执行此类分析所需的高维光谱信息。但是,对于d维高光谱图像,通常数据固有地占据m维空间,其中m d。在遥感界,这导致流形学习的使用最近有所增加,流形学习的目的是表征固有的高光谱数据所固有的嵌入式低维,非线性流形。经典的高光谱数据模型包括统计模型,线性子空间模型和线性混合模型,但这些模型可能会对数据的分布设置限制性假设。在实施传统的目标检测方法时尤其如此,并且这些模型的局限性有据可查。使用基于流形学习的方法,唯一的假设是数据驻留在可以由图形离散建模的基础流形上。本文介绍的研究重点是在高光谱图像中使用图论和流形学习。早期的工作探索了各种图形构建技术,并将其应用于拓扑异常检测(TAD)算法的背景模型,该技术是一种基于图论的异常检测方法。这导致对目标检测的关注,以及对特定基于图形的数据模型的开发以及随后使用流形学习进行的降维的关注。自适应图基于数据构建,然后用于实现局部线性嵌入(LLE)的自适应版本。我们人为地诱导目标流形并将其纳入自适应LLE转换;人工目标流形有助于在新的较低维流形坐标中指导目标数据与背景数据的分离。然后,在歧管空间中执行目标检测。

著录项

  • 作者

    Ziemann, Amanda K.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Remote sensing.;Optics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号