首页> 美国卫生研究院文献>Bioinformatics >Improving peak detection in high-resolution LC/MS metabolomics data using preexisting knowledge and machine learning approach
【2h】

Improving peak detection in high-resolution LC/MS metabolomics data using preexisting knowledge and machine learning approach

机译:使用现有知识和机器学习方法改善高分辨率LC / MS代谢组学数据中的峰检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Motivation: Peak detection is a key step in the preprocessing of untargeted metabolomics data generated from high-resolution liquid chromatography-mass spectrometry (LC/MS). The common practice is to use filters with predetermined parameters to select peaks in the LC/MS profile. This rigid approach can cause suboptimal performance when the choice of peak model and parameters do not suit the data characteristics.>Results: Here we present a method that learns directly from various data features of the extracted ion chromatograms (EICs) to differentiate between true peak regions from noise regions in the LC/MS profile. It utilizes the knowledge of known metabolites, as well as robust machine learning approaches. Unlike currently available methods, this new approach does not assume a parametric peak shape model and allows maximum flexibility. We demonstrate the superiority of the new approach using real data. Because matching to known metabolites entails uncertainties and cannot be considered a gold standard, we also developed a probabilistic receiver-operating characteristic (pROC) approach that can incorporate uncertainties.>Availability and implementation: The new peak detection approach is implemented as part of the apLCMS package available at >Contact: >Supplementary information: are available at Bioinformatics online.
机译:>动机:峰检测是对高分辨率液相色谱-质谱(LC / MS)生成的非目标代谢组学数据进行预处理的关键步骤。通常的做法是使用带有预定参数的过滤器来选择LC / MS配置文件中的峰。当峰模型和参数的选择不适合数据特征时,这种严格的方法可能会导致性能欠佳。>结果:这里,我们介绍一种直接从提取的离子色谱图(EIC)的各种数据特征中学习的方法),以区分LC / MS配置文件中的真实峰区域与噪声区域。它利用已知代谢物的知识以及强大的机器学习方法。与当前可用的方法不同,此新方法不采用参数峰形模型,而是具有最大的灵活性。我们展示了使用实际数据的新方法的优越性。由于与已知代谢物的匹配存在不确定性,不能被视为黄金标准,因此,我们还开发了一种可能包含不确定性的概率接收者操作特征(pROC)方法。>可用性和实现方式:新的峰值检测方法是作为apLCMS软件包的一部分而实施的软件,可从>联系人: >补充信息:获取,该信息可从在线生物信息学获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号