首页> 外文会议>Algorithms and architectures for parallel processing >Scheduling Resource of IaaS Clouds for Energy Saving Based on Predicting the Overloading Status of Physical Machines
【24h】

Scheduling Resource of IaaS Clouds for Energy Saving Based on Predicting the Overloading Status of Physical Machines

机译:基于预测物理机超载状态的IaaS云资源节能调度

获取原文
获取原文并翻译 | 示例

摘要

Due to the wide applications of IaaS (Infrastructure as a Service) , energy-saving technologies of IaaS clouds has attracted much attention. However, it is very difficult for IaaS cloud providers to guarantee both of energy saving and performance under the condition of satisfying SLA (Service Level Agreement). Recently, in researches of Iaas cloud resource scheduling strategies, it is focused that SLA violation or overloaded host can trigger migrations of virtual machines. However, it is a new difficulty to resource scheduling among the physical machines that high variable workloads have to be conducted. Therefore, in order to schedule resource optimally, we propose a novel status-prediction-based framework, which seamlessly integrates the virtual machine migration optimal time theorem and the status prediction model of physical machines based on the hidden Markov process. Further, we address a resource scheduling algorithm based on the status prediction model on physical machines. Finally, through real experimental scenarios, we verify the effectiveness of the virtual machine migration timing prediction and the resource scheduling algorithm.
机译:由于IaaS(基础设施即服务)的广泛应用,IaaS云的节能技术引起了广泛关注。但是,在满足SLA(服务水平协议)的条件下,IaaS云提供商很难同时保证节能和性能。近来,在Iaas云资源调度策略的研究中,重点是违反SLA或主机过载会触发虚拟机的迁移。但是,在物理机之间进行资源调度的新困难是必须执行高可变工作负载。因此,为了优化调度资源,我们提出了一种基于状态预测的新颖框架,该框架将虚拟机迁移最佳时间定理与物理计算机的状态预测模型基于隐马尔可夫过程无缝地集成在一起。此外,我们针对基于物理机器上状态预测模型的资源调度算法进行了研究。最后,通过实际的实验场景,我们验证了虚拟机迁移时序预测和资源调度算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号