首页> 外文会议>Algorithmic Number Theory >A Birthday Paradox for Markov Chains, with an Optimal Bound for Collision in the Pollard Rho Algorithm for Discrete Logarithm
【24h】

A Birthday Paradox for Markov Chains, with an Optimal Bound for Collision in the Pollard Rho Algorithm for Discrete Logarithm

机译:离散对数Pollard Rho算法中具有最优碰撞边界的Markov链的生日悖论

获取原文
获取原文并翻译 | 示例

摘要

We show a Birthday Paradox for self-intersections of Markov chains with uniform stationary distribution. As an application, we analyze Pollard's Rho algorithm for finding the discrete logarithm in a cyclic group G and find that, if the partition in the algorithm is given by a random oracle, then with high probability a collision occurs in Θ(|G|~(1/2)) steps. This is the first proof of the correct bound which does not assume that every step of the algorithm produces an i.i.d. sample from G.
机译:我们显示了具有均匀平稳分布的马尔可夫链的自相交的生日悖论。作为一种应用,我们分析了Pollard的Rho算法来查找循环群G中的离散对数,并发现,如果算法中的分区由随机预言给出,则很有可能在Θ(| G |〜 (1/2))步。这是正确界限的第一个证明,它不假定算法的每个步骤都会产生一个i.i.d。 G的样本

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号