首页> 外文会议>Algorithmic Learning Theory; Lecture Notes in Artificial Intelligence; 4264 >Reinforcement Learning and Apprenticeship Learning for Robotic Control
【24h】

Reinforcement Learning and Apprenticeship Learning for Robotic Control

机译:机器人控制的强化学习和学徒学习

获取原文
获取原文并翻译 | 示例

摘要

Many robotic control problems, such as autonomous helicopter flight, legged robot locomotion, and autonomous driving, remain challenging even for modern reinforcement learning algorithms. Some of the reasons for these problems being challenging are (ⅰ) It can be hard to write down, in closed form, a formal specification of the control task (for example, what is the cost function for "driving well"?), (ⅱ) It is often difficult to learn a good model of the robot's dynamics, (ⅲ) Even given a complete specification of the problem, it is often computationally difficult to find good closed-loop controller for a high-dimensional, stochastic, control task. However, when we are allowed to learn from a human demonstration of a task-in other words, if we are in the apprenticeship learning setting-then a number of efficient algorithms can be used to address each of these problems.
机译:即使对于现代强化学习算法,许多机器人控制问题,例如自主直升机飞行,腿式机器人运动和自主驾驶,仍然具有挑战性。这些问题具有挑战性的一些原因是(ⅰ)很难以封闭的形式写下控制任务的正式规范(例如,“开车很好”的成本函数是什么?),( ⅲ)通常很难了解机器人动力学的良好模型,(ⅲ)即使给出了完整的问题说明,对于高维,随机,控制任务也很难找到好的闭环控制器。但是,当我们被允许从人类对任务的演示中学习时,换句话说,如果我们处于学徒学习环境中,则可以使用许多有效的算法来解决这些问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号