【24h】

OWL-DL Based Ontology Inference Engine Assessment for Context-Aware Services

机译:基于OWL-DL的上下文感知服务的本体推理引擎评估

获取原文
获取原文并翻译 | 示例

摘要

To acquire hidden and potentially useful information from context data, ubiquitous computing services began taking advantage of the reasoning capabilities inherent in inference engines. However, since a traditional approach to evaluating inference engines' performance levels typically focuses on static information reasoning, specific evaluations of requirements that pertain to the ubiquitous computing environment have been largely neglected. Hence, this paper aims to propose an augmented evaluation framework for inference engines, and then examine how OWL-DL-based inference engines perform by applying them to realistic context-aware services. Six measurement criteria are proposed and measured, including scalability as data set gets large, responsiveness for users' requests, and adaptability to frequent inference requests.
机译:为了从上下文数据中获取隐藏的和潜在有用的信息,无处不在的计算服务开始利用推理引擎固有的推理功能。然而,由于评估推理机性能水平的传统方法通常侧重于静态信息推理,因此很大程度上忽略了对与普适计算环境有关的需求的特定评估。因此,本文旨在为推理引擎提供一个增强的评估框架,然后研究将基于OWL-DL的推理引擎应用于现实的上下文感知服务的性能。提出并测量了六个测量标准,包括随着数据集变大的可伸缩性,对用户请求的响应能力以及对频繁推理请求的适应性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号