首页> 外文会议>Advances in Neural Networks - ISNN 2007 pt.2; Lecture Notes in Computer Science; 4492 >Symmetry Based Two-Dimensional Principal Component Analysis for Face Recognition
【24h】

Symmetry Based Two-Dimensional Principal Component Analysis for Face Recognition

机译:基于对称的二维主成分分析在人脸识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Two-dimensional principal component analysis (2DPCA) proposed recently overcome a limitation of principal component analysis (PCA) which is expensive computational cost. Symmetrical principal component analysis (SPCA) is also a better feature extraction technique because it utilizes effectively the symmetrical property of human face. This paper presents a symmetry based two-dimensional principal component analysis (S2DPCA), which combines the advantages of 2DPCA and of the SPCA. The experimental results show that S2DPCA is competitive with or superior to 2DPCA and SPCA.
机译:最近提出的二维主成分分析(2DPCA)克服了主成分分析(PCA)的局限性,即计算成本昂贵。对称主成分分析(SPCA)也是一种更好的特征提取技术,因为它有效利用了人脸的对称特性。本文提出了一种基于对称的二维主成分分析(S2DPCA),它结合了2DPCA和SPCA的优点。实验结果表明,S2DPCA与2DPCA和SPCA竞争或优于2DPCA和SPCA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号