首页> 外文会议>Advances in Neural Networks - ISNN 2007 pt.1; Lecture Notes in Computer Science; 4491 >On Neural Network Switched Stabilization of SISO Switched Nonlinear Systems with Actuator Saturation
【24h】

On Neural Network Switched Stabilization of SISO Switched Nonlinear Systems with Actuator Saturation

机译:具有执行器饱和的SISO切换非线性系统的神经网络切换镇定

获取原文
获取原文并翻译 | 示例

摘要

As we know, saturation, deadzone, backlash, and hysteresis are the most common actuator nonlinearities in practical control system applications. Saturation nonlinearity is unavoidable in most actuators. In this paper, we address the Neural Network saturation compensation for a class of switched nonlinear systems with actuator saturation. An actuator saturation compensation switching scheme for switched nonlinear systems with its subsystem in Bru-novsky canonical form is presented using Neural Network. The actuator saturation is assumed to be unknown and the saturation compensator is introduced into a feed-forward path. The scheme that leads to switched stability and disturbance rejection is rigorously proved. The tracking performance of switched nonlinear system is guaranteed based on common Lyapunov approach under the designed switching strategy.
机译:众所周知,在实际控制系统应用中,饱和度,死区,间隙和滞后是最常见的执行器非线性。在大多数执行器中,饱和非线性是不可避免的。在本文中,我们针对一类具有执行器饱和的非线性开关系统解决了神经网络的饱和补偿问题。利用神经网络提出了布鲁诺夫斯基标准形式的非线性系统的执行器饱和补偿切换方案。假定执行器饱和度未知,并且将饱和补偿器引入前馈路径。严格证明了导致开关稳定性和干扰抑制的方案。在设计的切换策略下,基于常见的Lyapunov方法保证了切换非线性系统的跟踪性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号