首页> 外文会议>Advances in multimedia information processing - PCM 2009 >Intelligent Music Playlist Recommendation Based on User Daily Behavior and Music Content
【24h】

Intelligent Music Playlist Recommendation Based on User Daily Behavior and Music Content

机译:基于用户日常行为和音乐内容的智能音乐播放列表推荐

获取原文
获取原文并翻译 | 示例

摘要

A music hobbyist listens to different types of music at different times of the day. Thus, an automatic music recommendation that can adjust to the hobbyist's daily activities on this basis is necessary in order to generate the appropriate music to suit the user's current activity, whether it is working or driving. Although existing research has introduced various music recommendation systems, there is yet a system that generates the music recommendation based on time. Hence, in this paper, we present a music recommendation system, which provides an automatic and personalized music playing service based on the time parameter and user's interesting. This system represents the characteristics of music from features extracted out of the music's symbolic form. The user's music rating history and the associated time stamps in the user's profile constitute the training data of the intelligent system. The effectiveness and efficiency of artificial neural network and decision tree are investigated as the kernels of the system. A series of experiments have been carried out to demonstrate the performance of this system.
机译:音乐爱好者在一天中的不同时间收听不同类型的音乐。因此,为了产生适合用户当前活动的适当音乐,无论是工作还是开车,都必须在此基础上自动调整音乐,以适应爱好者的日常活动。尽管现有研究已经引入了各种音乐推荐系统,但是仍然存在一种基于时间生成音乐推荐的系统。因此,在本文中,我们提出了一种音乐推荐系统,该系统根据时间参数和用户的兴趣提供自动和个性化的音乐播放服务。该系统从音乐符号形式中提取的特征来表示音乐的特征。用户的音乐评分历史和用户资料中的相关时间戳构成了智能系统的训练数据。研究了人工神经网络和决策树作为系统核心的有效性和效率。已经进行了一系列实验以证明该系统的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号