首页> 外文会议>Advances in machine learning >Mining Multi-label Concept-Drifting Data Streams Using Dynamic Classifier Ensemble
【24h】

Mining Multi-label Concept-Drifting Data Streams Using Dynamic Classifier Ensemble

机译:使用动态分类器集成挖掘多标签概念抽取数据流

获取原文
获取原文并翻译 | 示例

摘要

The problem of mining single-label data streams has been extensively studied in recent years. However, not enough attention has been paid to the problem of mining multi-label data streams. In this paper, we propose an improved binary relevance method to take advantage of dependence information among class labels, and propose a dynamic classifier ensemble approach for classifying multi-label concept-drifting data streams. The weighted majority voting strategy is used in our classification algorithm. Our empirical study on both synthetic data set and real-life data set shows that the proposed dynamic classifier ensemble with improved binary relevance approach outperforms dynamic classifier ensemble with binary relevance algorithm, and static classifier ensemble with binary relevance algorithm.
机译:近年来,对单标签数据流进行挖掘的问题已得到广泛研究。但是,对挖掘多标签数据流的问题尚未给予足够的重视。在本文中,我们提出了一种改进的二进制相关性方法,以利用类别标签之间的依赖性信息,并提出一种动态分类器集成方法,对多标签概念漂移数据流进行分类。加权多数投票策略用于我们的分类算法。我们对综合数据集和现实生活数据集的经验研究表明,提出的具有改进的二进制相关性方法的动态分类器集合优于具有二进制相关性算法的动态分类器集合,以及具有二进制相关性算法的静态分类器集合。

著录项

  • 来源
    《Advances in machine learning》|2009年|P.308-321|共14页
  • 会议地点 Nanjing(CN);Nanjing(CN)
  • 作者单位

    College of Information Engineering, Northwest AF University Yangling, Shaanxi Province, P.R. China, 712100;

    College of Information Engineering, Northwest AF University Yangling, Shaanxi Province, P.R. China, 712100;

    College of Information Engineering, Northwest AF University Yangling, Shaanxi Province, P.R. China, 712100;

    College of Information Engineering, Northwest AF University Yangling, Shaanxi Province, P.R. China, 712100;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人工智能理论;
  • 关键词

    multi-label; data stream; concept drift; binary relevance; dynamic classifier ensemble;

    机译:多标签数据流;概念漂移二进制相关性;动态分类器集成;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号