首页> 外文期刊>Intelligent data analysis >Mining multi-dimensional concept-drifting data streams using Bayesian network classifiers
【24h】

Mining multi-dimensional concept-drifting data streams using Bayesian network classifiers

机译:使用贝叶斯网络分类器挖掘多维概念漂移数据流

获取原文
获取原文并翻译 | 示例

摘要

In recent years, a plethora of approaches have been proposed to deal with the increasingly challenging task of mining concept-drifting data streams. However, most of these approaches can only be applied to uni-dimensional classification problems where each input instance has to be assigned to a single output class variable. The problem of mining multi-dimensional data streams, which includes multiple output class variables, is largely unexplored and only few streaming multi-dimensional approaches have been recently introduced. In this paper, we propose a novel adaptive method, named Locally Adaptive-MB-MBC (LA-MB-MBC), for mining streaming multi-dimensional data. To this end, we make use of multi-dimensional Bayesian network classifiers (MBCs) as models. Basically, LA-MB-MBC monitors the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a concept drift is detected, LA-MB-MBC adapts the current MBC network locally around each changed node. An experimental study carried out using synthetic multi-dimensional data streams shows the merits of the proposed method in terms of concept drift detection as well as classification performance.
机译:近年来,已经提出了许多方法来处理挖掘概念漂移数据流的日益挑战性的任务。但是,这些方法大多数只能应用于一维分类问题,其中每个输入实例必须分配给单个输出类变量。挖掘包含多个输出类变量的多维数据流的问题在很大程度上尚未得到解决,并且最近仅引入了很少的多维流方法。在本文中,我们提出了一种新的自适应方法,称为局部自适应MB-MBC(LA-MB-MBC),用于挖掘流多维数据。为此,我们使用多维贝叶斯网络分类器(MBC)作为模型。基本上,LA-MB-MBC使用平均对数可能性得分和Page-Hinkley测试来监视概念随时间的漂移。然后,如果检测到概念漂移,则LA-MB-MBC会在每个更改的节点周围本地适应当前的MBC网络。使用合成的多维数据流进行的实验研究显示了该方法在概念漂移检测以及分类性能方面的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号