首页> 外文会议>Advanced sensor systems and applications VII >Multi-sensor Data Fusion and Estimation with Poor Information Based on Bootstrap-fuzzy Model
【24h】

Multi-sensor Data Fusion and Estimation with Poor Information Based on Bootstrap-fuzzy Model

机译:基于引导模糊模型的信息差的多传感器数据融合与估计

获取原文
获取原文并翻译 | 示例

摘要

Multi-sensor data fusion and estimation with poor information is a common problem in the field of stress measurement. Small and distribution unknown data sample obtained from multi-sensor makes the data fusion and estimation much difficult. To solve this problem, a novel bootstrap-fuzzy model is developed. This model is different from the statistical methods and only needs a little data. At first, the limited stress multi-sensor measurement data is expanded by the bootstrap sampling. Secondly, the data fusion sequence is constructed by the bootstrap distribution. Finally the true value and the interval of the stress multi-sensor measurement data are estimated by the fuzzy subordinate functions. Experimental results show that the data fusion sequence is in a good agreement with the original measurement data. The accuracy of the estimated interval can reach 85%. Therefore, the effect of the proposed bootstrap-fuzzy model is validated.
机译:具有不良信息的多传感器数据融合和估计是应力测量领域中的普遍问题。从多传感器获得的小且分布未知的数据样本使数据融合和估计变得非常困难。为了解决这个问题,开发了一种新颖的bootstrap-fuzzy模型。该模型不同于统计方法,只需要少量数据。首先,通过自举采样扩展有限应力多传感器测量数据。其次,通过引导分布构造数据融合序列。最后,通过模糊从属函数估计应力多传感器测量数据的真实值和间隔。实验结果表明,该数据融合序列与原始测量数据吻合良好。估计间隔的准确性可以达到85%。因此,所提出的引导模糊模型的效果得到了验证。

著录项

  • 来源
    《Advanced sensor systems and applications VII》|2016年|100250j.1-100250j.10|共10页
  • 会议地点 Beijing(CN)
  • 作者单位

    Beijing Key Laboratory for Optoelectric Measurement Technology, Beijing Information Science and Technology University ,Beijing 100101, China,Academy of Opto-electronics,Chinese Academy of Sciences, Beijing 100094, China;

    Beijing Key Laboratory for Optoelectric Measurement Technology, Beijing Information Science and Technology University ,Beijing 100101, China;

    Academy of Opto-electronics,Chinese Academy of Sciences, Beijing 100094, China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    poor information; bootstrap-fuzzy model; data fusion; stress multi-sensor;

    机译:信息差;引导模糊模型数据融合;应力多传感器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号