首页> 外文会议>Advanced intelligent computing theories and applications : With aspects of artificial intelligence >Enhancing Efficiency of Intrusion Prediction Based on Intelligent Immune Method
【24h】

Enhancing Efficiency of Intrusion Prediction Based on Intelligent Immune Method

机译:基于智能免疫方法的入侵预测效率提高

获取原文
获取原文并翻译 | 示例

摘要

In order to find the attack in real time, an intrusion prediction method based on intelligent immune threshold matching algorithm was presented. Using a dynamic load-balancing algorithm, network data packet was distributed to a set of predictors by the balancer; it could avoid packet loss and false negatives in high-performance network with handling heavy traffic loads in real-time. In addition, adopting the dynamic threshold value, which was generated from variable network speed, the mature antibody could better match the antigen of the database, and consequently the accuracy of prediction was increased. Experiment shows this intrusion prediction method has relatively low false positive rate and false negative rate, so it effectively resolves the shortage of intrusion detection.
机译:为了实时发现攻击,提出了一种基于智能免疫阈值匹配算法的入侵预测方法。使用动态负载平衡算法,平衡器将网络数据包分配给一组预测器;通过实时处理繁重的流量负载,它可以避免高性能网络中的数据包丢失和误报。另外,由于采用了可变网络速度生成的动态阈值,因此成熟抗体可以更好地匹配数据库中的抗原,从而提高了预测的准确性。实验表明,该入侵预测方法具有较低的误报率和误报率,有效地解决了入侵检测的不足。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号