首页> 外文会议>Adaptive and Learning Systems >Training product unit neural networks with genetic algorithms
【24h】

Training product unit neural networks with genetic algorithms

机译:用遗传算法训练产品单元神经网络

获取原文
获取原文并翻译 | 示例

摘要

Abstract: This paper discusses the training of product neural networks using genetic algorithms. Two unusual techniques are combined; product units are employed in addition to the traditional summing units and a genetic algorithm is used to train the network rather than using backpropagation. As an example, a neural network is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima can affect the performance of a genetic algorithm, and one method of overcoming this is presented.!6
机译:摘要:本文讨论了使用遗传算法训练产品神经网络。两种不寻常的技术相结合;除了传统的求和单元外,还使用乘积单元,并且使用遗传算法来训练网络,而不是使用反向传播。例如,训练神经网络来计算CMOS开关中晶体管的最佳宽度。它显示了局部极小值如何影响遗传算法的性能,并提出了一种克服该问题的方法。6

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号