首页> 外文会议>Adaptive Dynamic Programming and Reinforcement Learning, 2009. ADPRL '09 >Neural-network-based reinforcement learning controller for nonlinear systems with non-symmetric dead-zone inputs
【24h】

Neural-network-based reinforcement learning controller for nonlinear systems with non-symmetric dead-zone inputs

机译:具有不对称死区输入的非线性系统的基于神经网络的强化学习控制器

获取原文

摘要

A novel adaptive-critic-based NN controller using reinforcement learning is developed for a class of nonlinear systems with non-symmetric dead-zone inputs. The adaptive critic NN controller uses two NNs: the critic NN is used to approximate the strategic utility function, and the output of action NN is used to approximate the unknown nonlinear function and to minimize the strategic utility function. The tuning of the NNs is performed online without an explicit offline learning phase. The uniformly ultimate boundedness of the close-loop tracking error is derived by using using the Lyapunov method. Finally, a numerical example is included to show the effectiveness of the theoretical results.
机译:针对具有非对称死区输入的一类非线性系统,开发了一种使用强化学习的新型基于自适应批评的神经网络控制器。自适应评论者NN控制器使用两个NN:评论者NN用于逼近战略效用函数,动作NN的输出用于逼近未知非线性函数并使战略效用函数最小化。 NN的调整是在线执行的,而没有明确的离线学习阶段。闭环跟踪误差的一致最终有界度是通过使用Lyapunov方法得出的。最后,通过算例说明了理论结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号