首页> 外文会议>The 8th international conference on optimization: Techniques and Applications >Prediction on the Collapse of Sewerage Systems by using Support Vector Machines
【24h】

Prediction on the Collapse of Sewerage Systems by using Support Vector Machines

机译:支持向量机在污水处理系统崩溃预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

Support Vector Machine (SVM) is gaining much popularity as one of effective methods for machine learning in recent years. In pattern classification problems with two class sets, it generalizes linear classifiers into high dimensional feature spaces through nonlinear mappings defined implicitly by kernels in the Hilbert space so that it may produce nonlinear classifiers in the original data space. Linear classifiers then are optimized to give the maximal margin separation between the classes. In this paper, we apply support vector machine to the prediction on the collapse of sewerage systems which become superannuated, and investigate the effectiveness of using SVM.
机译:支持向量机(SVM)作为近年来机器学习的一种有效方法而受到广泛欢迎。在具有两个类别集的模式分类问题中,它通过希尔伯特空间中的内核隐式定义的非线性映射将线性分类器推广到高维特征空间,以便可以在原始数据空间中生成非线性分类器。然后对线性分类器进行优化,以在类之间提供最大的边距间隔。在本文中,我们将支持向量机应用于对被淘汰的污水处理系统崩溃的预测,并研究使用支持向量机的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号