首页> 外文会议>2019 56th ACM/IEEE Design Automation Conference >HeadStart: Enforcing Optimal Inceptions in Pruning Deep Neural Networks for Efficient Inference on GPGPUs
【24h】

HeadStart: Enforcing Optimal Inceptions in Pruning Deep Neural Networks for Efficient Inference on GPGPUs

机译:启程:在修剪深度神经网络时强制执行最佳指令,以便在GPGPU上进行有效推理

获取原文
获取原文并翻译 | 示例

摘要

Deep convolutional neural networks are well-known for the extensive parameters and computation intensity. Structured pruning is an effective solution to obtain a more compact model for the efficient inference on GPGPUs, without designing specific hardware accelerators. However, previous works resort to certain metrics in channel/filter pruning and count on labor intensive fine-tunings to recover the accuracy loss. The “inception” of the pruned model, as another form factor, has indispensable impact to the final accuracy but its importance is often ignored in these works. In this paper, we prove that optimal inception will be more likely to induce a satisfied performance and shortened fine-tuning iterations. We also propose a reinforcement learning based solution, termed as HeadStart, seeking to learn the best way of pruning aiming at the optimal inception. With the help of the specialized head-start network, it could automatically balance the tradeoff between the final accuracy and the preset speedup rather than tilting to one of them, which makes it differentiated from existing works as well. Experimental results show that HeadStart could attain up to 2. 25x inference speedup with only 1.16% accuracy loss tested with large scale images on various GPGPUs, and could be well generalized to various cutting-edge DCNN models.
机译:深卷积神经网络以其广泛的参数和计算强度而闻名。结构化修剪是一种有效的解决方案,可在不设计特定硬件加速器的情况下获得更紧凑的模型以在GPGPU上进行有效推理。但是,先前的工作在通道/过滤器修剪中采用了某些指标,并依靠劳动密集型的微调来恢复精度损失。修剪模型的“初始”是另一个形式因素,对最终精度具有不可或缺的影响,但在这些工作中,其重要性常常被忽略。在本文中,我们证明了最佳启动将更有可能引起令人满意的性能并缩短微调迭代。我们还提出了一种基于强化学习的解决方案,称为HeadStart,旨在寻求针对最佳起始的最佳修剪方式。借助专门的起始网络,它可以自动在最终精度和预设加速之间权衡取舍,而不必倾斜其中之一,这也使其与现有作品有所不同。实验结果表明,HeadStart最多可以达到2倍。推理速度提高了25倍,而在各种GPGPU上使用大规模图像测试的准确度损失仅为1.16%,并且可以很好地推广到各种先进的DCNN模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号