首页> 外文期刊>Internet of Things Journal, IEEE >EasiEdge: A Novel Global Deep Neural Networks Pruning Method for Efficient Edge Computing
【24h】

EasiEdge: A Novel Global Deep Neural Networks Pruning Method for Efficient Edge Computing

机译:EASEIDGE:一种新的全球深度神经网络修剪方法,用于高效的高效计算方法

获取原文
获取原文并翻译 | 示例

摘要

Deep neural networks (DNNs) have shown tremendous success in many areas, such as signal processing, computer vision, and artificial intelligence. However, the DNNs require intensive computation resources, hindering their practical applications on the edge devices with limited storage and computation resources. Filter pruning has been recognized as a useful technique to compress and accelerate the DNNs, but most existing works tend to prune filters in a layerwise manner, facing some significant drawbacks. First, the layerwise pruning methods require prohibitive computation for per-layer sensitivity analysis. Second, layerwise pruning suffers from the accumulation of pruning errors, leading to performance degradation of pruned networks. To address these challenges, we propose a novel global pruning method, namely, EasiEdge, to compress and accelerate the DNNs for efficient edge computing. More specifically, we introduce an alternating direction method of multipliers (ADMMs) to formulate the pruning problem as a performance improving subproblem and a global pruning subproblem. In the global pruning subproblem, we propose to use information gain (IG) to quantify the impact of filters removal on the class probability distributions of network output. Besides, we propose a Taylor-based approximate algorithm (TBAA) to efficiently calculate the IG of filters. Extensive experiments on three data sets and two edge computing platforms verify that our proposed EasiEdge can efficiently accelerate DNNs on edge computing platforms with nearly negligible accuracy loss. For example, when EasiEdge prunes 80% filters in VGG-16, the accuracy drops by 0.22%, but inference latency on CPU of Jetson TX2 decreases from 76.85 to 8.01 ms.
机译:深度神经网络(DNN)在许多领域都表现出巨大的成功,例如信号处理,计算机视觉和人工智能。然而,DNN需要密集的计算资源,在具有有限的存储和计算资源的边缘设备上妨碍其实际应用。过滤器修剪已被识别为压缩和加速DNN的有用技术,但大多数现有工程倾向于以完整的方式修剪过滤器,面向一些显着的缺点。首先,分层修剪方法需要对每个层灵敏度分析的禁止计算。其次,层状修剪遭受修剪误差的累积,导致修剪网络的性能下降。为了解决这些挑战,我们提出了一种新的全球修剪方法,即Easiedge,压缩和加速DNN以获得高效的边缘计算。更具体地,我们介绍了乘法器(ADMMS)的交替方向方法,以将修剪问题作为改进子问题和全球修剪子问题的性能。在全球修剪子问题中,我们建议使用信息增益(IG)来量化过滤器对网络输出类概率分布的影响。此外,我们提出了一种基于泰勒的近似算法(TBAA),以有效地计算过滤器的IG。在三个数据集和两个边缘计算平台上进行了广泛的实验,验证了我们提出的Easiedge可以有效地加速边缘计算平台上的DNN,具有几乎可忽略的准确性损失。例如,当EASEIEDGE修剪VGG-16中的80%过滤器时,精度下降0.22%,但Jetson TX2的CPU的推断延迟从76.85降至8.01 ms。

著录项

  • 来源
    《Internet of Things Journal, IEEE》 |2021年第3期|1259-1271|共13页
  • 作者单位

    Wireless Sensor Network Laboratory Institute of Computing Technology Chinese Academy of Sciences Beijing China;

    Wireless Sensor Network Laboratory Institute of Computing Technology Chinese Academy of Sciences Beijing China;

    Wireless Sensor Network Laboratory Institute of Computing Technology Chinese Academy of Sciences Beijing China;

    Wireless Sensor Network Laboratory Institute of Computing Technology Chinese Academy of Sciences Beijing China;

    Wireless Sensor Network Laboratory Institute of Computing Technology Chinese Academy of Sciences Beijing China;

    Wireless Sensor Network Laboratory Institute of Computing Technology Chinese Academy of Sciences Beijing China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Acceleration; Internet of Things; Computational modeling; Edge computing; Sensitivity analysis; Optimization; Convex functions;

    机译:加速;东西互联网;计算建模;边缘计算;敏感性分析;优化;凸函数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号