首页> 外文期刊>Design & Test of Computers, IEEE >A Quantitative Exploration of Collaborative Pruning and Approximation Computing Towards Energy Efficient Neural Networks
【24h】

A Quantitative Exploration of Collaborative Pruning and Approximation Computing Towards Energy Efficient Neural Networks

机译:对节能神经网络的协同修剪和近似计算的定量探索

获取原文
获取原文并翻译 | 示例

摘要

Editor's note: This work has the goal of minimizing digital neural network computation energy consumption with little loss in accuracy. The authors describe a Dynamic Network Surgery based approach to network pruning, after which weights are incrementally selected for approximate multiplication. Considering which network components are necessary and determining the needed level of accuracy for them enables greater energy savings than solving either problem independently. - Robert P. Dick, University of Michigan
机译:编者注:这项工作具有最大限度地减少数字神经网络计算能源消耗,精度几乎没有损失。作者描述了一种基于网络修剪的动态网络手术方法,之后逐步选择重量以进行近似乘法。考虑到需要哪些网络组件并确定它们的所需精度水平,使得能够更大的能量节省,而不是独立解决任一问题。 - 密歇根大学罗伯特P. Dick

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号