首页> 外文会议>3rd workshop on computational approaches to linguistic code-switching 2018 >GHHT at CALCS 2018: Named Entity Recognition for Dialectal Arabic Using Neural Networks
【24h】

GHHT at CALCS 2018: Named Entity Recognition for Dialectal Arabic Using Neural Networks

机译:GHHT在CALCS 2018上:使用神经网络命名方言阿拉伯语的实体识别

获取原文
获取原文并翻译 | 示例

摘要

This paper describes our system submission to the CALCS 2018 shared task on named entity recognition on code-switched data for the language variant pair of Modern Standard Arabic and Egyptian dialectal Arabic. We build a a Deep Neural Network that combines word and character-based representations in convo-lutional and recurrent networks with a CRF layer. The model is augmented with stacked layers of enriched information such pre-trained embeddings, Brown clusters and named entity gazetteers. Our system is ranked second among those participating in the shared task achieving an FB1 average of 70.09%.
机译:本文介绍了我们对CALCS 2018共享任务的系统提交,该共享任务涉及对现代标准阿拉伯语和埃及方言阿拉伯语的语言变体对的代码交换数据上的命名实体识别。我们构建了一个深度神经网络,该网络结合了带CRF层的卷积和循环网络中基于单词和字符的表示形式。该模型增加了丰富的信息堆叠层,例如预训练的嵌入,布朗簇和命名实体地名词典。我们的系统在参与共享任务的系统中排名第二,达到FB1平均值70.09%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号