首页> 外文会议>2018 55th ACM/ESDA/IEEE Design Automation Conference >A Fast and Robust Failure Analysis of Memory Circuits Using Adaptive Importance Sampling Method
【24h】

A Fast and Robust Failure Analysis of Memory Circuits Using Adaptive Importance Sampling Method

机译:自适应重要性采样法快速可靠地分析存储电路故障

获取原文
获取原文并翻译 | 示例

摘要

Performance failure has become a growing concern for the robustness and reliability of memory circuits. It is challenging to accurately estimate the extremely small failure probability when failed samples are distributed in multiple disjoint failure regions. In this paper, we develop an adaptive importance sampling (AlS) method. AIS has several iterations of sampling region adjusbnents, while existing methods pre-decide a static sampling distribution. By iteratively searching for failure regions, AIS may lead to better efficiency and accuracy. This is validated by our experiments. For SRAM cell with single failure region, AIS uses 5-10X fewer samples and reaches better accuracy when compared to several recent methods. For sense amplifier circuit with multiple failure regions, AIS is 4369X faster than MC without compromising accuracy, while other methods fail to cover all failure regions in our experiment.
机译:对于存储电路的健壮性和可靠性,性能故障已成为日益关注的问题。当将失败的样本分布在多个不相交的失败区域中时,准确估计极小的失败概率具有挑战性。在本文中,我们开发了一种自适应重要性抽样(AlS)方法。 AIS具有采样区域佐剂的多次迭代,而现有方法预先确定了静态采样分布。通过迭代搜索故障区域,AIS可以提高效率和准确性。我们的实验证实了这一点。对于具有单个故障区域的SRAM单元,与几种最新方法相比,AIS使用的样本减少了5-10倍,并且达到了更高的精度。对于具有多个故障区域的读出放大器电路,AIS比MC快4369倍,而又不影响精度,而其他方法无法覆盖我们实验中的所有故障区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号