首页> 外文会议>2017 IEEE Automatic Speech Recognition and Understanding Workshop >Grounded language understanding for manipulation instructions using GAN-based classification
【24h】

Grounded language understanding for manipulation instructions using GAN-based classification

机译:使用基于GAN的分类对操作指令有扎实的语言理解

获取原文
获取原文并翻译 | 示例

摘要

The target task of this study is grounded language understanding for domestic service robots (DSRs). In particular, we focus on instruction understanding for short sentences where verbs are missing. This task is of critical importance to build communicative DSRs because manipulation is essential for DSRs. Existing instruction understanding methods usually estimate missing information only from non-grounded knowledge; therefore, whether the predicted action is physically executable or not was unclear. In this paper, we present a grounded instruction understanding method to estimate appropriate objects given an instruction and situation. We extend the Generative Adversarial Nets (GAN) and build a GAN-based classifier using latent representations. To quantitatively evaluate the proposed method, we have developed a data set based on the standard data set used for visual question answering (VQA). Experimental results have shown that the proposed method gives the better result than baseline methods.
机译:这项研究的目标任务是针对家庭服务机器人(DSR)的基础语言理解。特别是,我们专注于缺少动词的短句子的指令理解。由于操纵对于DSR至关重要,因此此任务对于构建通信DSR至关重要。现有的指令理解方法通常仅从不扎实的知识中估计丢失的信息。因此,尚不清楚该预测动作是否在物理上可执行。在本文中,我们提出了一种扎根的指令理解方法,可以根据指令和情况估计合适的对象。我们扩展了生成对抗网络(GAN),并使用潜在表示构建了基于GAN的分类器。为了定量评估所提出的方法,我们基于用于视觉问题解答(VQA)的标准数据集开发了一个数据集。实验结果表明,所提出的方法比基线方法具有更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号