【24h】

On the Memory Wall and Performance of Symmetric Sparse Matrix Vector Multiplications In Different Data Structures on Shared Memory Machines

机译:共享存储机器上不同数据结构中对称稀疏矩阵矢量乘法的存储壁和性能

获取原文
获取原文并翻译 | 示例

摘要

Sparse matrix vector multiplications (SpMVs) are typical sparse operations which have a high ratio of memory reference volume to computations. According to the roof-line model, the performance of such operations is limited by the memory bandwidth on shared memory machine. A careful design of a data structure can improve the performance of such sparse memory intensive operations. By comparing the performance of symmetric SpMVs in three different data structures, the paper shows that a packed compressed data structure for symmetric sparse matrices significantly improves the performance of symmetric sparse matrix vector multiplication on shared memory machine. A simple linear model is proposed to show that the floating point operations time can be overlapped by the memory reference time and thus is negligible for such sparse operations with intensive memory reference. Various numerical results are presented, compared, analyzed and validated to confirm the proposed model, and the STREAM benchmark is also used to verify our results.
机译:稀疏矩阵向量乘法(SpMV)是典型的稀疏运算,具有很高的内存参考量与计算比率。根据屋顶线模型,此类操作的性能受共享存储计算机上的内存带宽限制。精心设计数据结构可以提高这种稀疏内存密集型操作的性能。通过比较三种不同数据结构中对称SpMV的性能,本文表明,用于对称稀疏矩阵的压缩压缩数据结构显着提高了共享存储机上对称稀疏矩阵矢量乘法的性能。提出了一个简单的线性模型来表明浮点运算时间可以与存储器参考时间重叠,因此对于具有密集存储器参考的稀疏运算可以忽略不计。提出,比较,分析和验证了各种数值结果,以确认所提出的模型,并且还将STREAM基准用于验证我们的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号