首页> 外文学位 >Fast space-varying convolution in stray light reduction, fast matrix vector multiplication using the sparse matrix transform, and activation detection in fMRI data analysis.
【24h】

Fast space-varying convolution in stray light reduction, fast matrix vector multiplication using the sparse matrix transform, and activation detection in fMRI data analysis.

机译:快速减少杂散光的空间变化卷积,使用稀疏矩阵变换的快速矩阵向量乘法以及fMRI数据分析中的激活检测。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, I will address three interesting problems in the area of image processing: fast space-varying convolution in stray light reduction, fast matrix vector multiplication using the sparse matrix transform, and activation detection in functional Magnetic Resonance Imaging (fMRI) data analysis.In the first topic, we study the problem of space-varying convolution which often arises in the modeling or restoration of images captured by optical imaging systems. Specifically, in the application of stray light reduction, where the stray light point spread function varies across the field of view, accurate restoration requires the use of space-varying convolution. While space-invariant convolution can be efficiently implemented with the Fast Fourier Transform (FFT), space-varying convolution requires direct implementation of the convolution operation, which can be very computationally expensive when the convolution kernel is large.In this work, we developed two general approaches for the efficient implementation of space-varying convolution through the use of piecewise isoplanatic approximation and matrix source coding techniques. In the piecewise isoplanatic approximation approach, we partition the image into isoplanatic patches based on vector quantization, and use a piecewise isoplanatic model to approximate the fully space-varying model. Then the space-varying convolution can be efficiently computed by using FFT to compute space-invariant convolution of each patch and adding all pieces together. In the matrix source coding approach, we dramatically reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. This approach leads to a trade-off between the accuracy and speed of the operation. The experimental results show that our algorithms can achieve a dramatic reduction in computation while achieving high accuracy.In the second topic, we aim at developing a fast algorithm for computing matrix-vector products which are often required to solve problems in linear systems. If the matrix size is P x P and is dense, then the complexity for computing this matrix-vector product is generally O(P2). So as the dimension P goes up, the computation and storage required can increase dramatically, in some cases making the operation infeasible to compute. When the matrix is Toeplitz, the product can be efficiently computed in O(P log P) by using the fast Fourier transform (FFT). However, in the general problems the matrix is not Toeplitz, which makes the computation difficult.In this work, we adopt the concept of the recently introduced sparse matrix transform (SMT) and propose an algorithm to approximately decompose the matrix into the product of a series of sparse matrices and a diagonal matrix. In fact, we show that this decomposition forms an approximate singular value decomposition of a matrix. With our decomposition, the matrix-vector product can be computed with order O(P). Our approach is analogous to the way in which an FFT can be used for fast convolution but importantly, the proposed SMT decomposition can be applied to matrices that represent space or time-varying operations.We test the effectiveness of our algorithm on a space-varying convolution example. The particular application we consider is stray-light reduction in digital cameras, which requires the convolution of each new image with a large space-varying stray light point spread function (PSF). We demonstrate that our proposed method can dramatically reduce the computation required to accurately compute the required convolution of an image with the space-varying PSF.In the third topic, we study the problem of fMRI activation detection, which is to detect which region of the brain is activated when the subject is presented with a specific stimulus. FMRI data is subject to severe noise and some extent of blur. So recovering the signal and successfully identifying the activated voxels are challenging inverse problems.We propose a new model for event-related fMRI which explicitly incorporates the spatial correlation introduced by the scanner, and develop a new set of tools for activation detection. We propose simple, efficient algorithms to estimate model parameters. We develop an activation detection algorithm which consists of two parts: image restoration and maximum a posteriori (MAP) estimation. During the image restoration stage, a total-variation (TV) based approach is employed to restore each data slice, for each time index. At the MAP estimation stage, we estimate parameters of a parametric hemodynamic response function (HRF) model for each pixel from the restored data. We employ the generalized Gaussian Markov random field (GGMRF) model to enforce spatial regularity when we compute the MAP estimate of the HRF parameters. We then threshold the amplitude parameter map to obtain the final activation map. Through comparison with the widely used general linear model method, in synthetic and real data experiments, we demonstrate the promise and advantage of our algorithm.
机译:在这篇论文中,我将解决图像处理领域中的三个有趣的问题:杂散光减少中的快速时空卷积,使用稀疏矩阵变换的快速矩阵矢量乘法以及功能性磁共振成像(fMRI)数据分析中的激活检测在第一个主题中,我们研究时空卷积问题,该问题经常发生在光学成像系统捕获的图像的建模或恢复中。具体地,在减少杂散光的应用中,其中杂散光点扩散函数在整个视场中变化,准确的恢复需要使用时空卷积。虽然可以使用快速傅立叶变换(FFT)高效地实现空间不变卷积,但时空卷积需要直接实现卷积运算,当卷积内核很大时,这在计算上会非常昂贵。在这项工作中,我们开发了两个通过使用分段等平面近似和矩阵源编码技术有效实现时空卷积的通用方法。在分段等平面近似方法中,我们基于矢量量化将图像划分为等平面斑块,并使用分段等平面模型来近似完全变空间模型。然后,通过使用FFT计算每个面片的空间不变卷积并将所有片段加在一起,可以有效地计算出时空卷积。在矩阵源编码方法中,我们通过将密集的时变卷积算子近似分解为稀疏变换的乘积,从而大大减少了计算量。这种方法导致了操作精度和速度之间的权衡。实验结果表明,我们的算法在实现高精度的同时,可以大大减少计算量。在第二个主题中,我们的目标是开发一种快速算法,用于求解线性系统中经常需要解决的矩阵向量乘积。如果矩阵大小为P x P且密集,则计算此矩阵向量乘积的复杂度通常为O(P2)。因此,随着维数P的增加,所需的计算和存储量可能会急剧增加,在某些情况下会使该操作难以计算。当矩阵为Toeplitz时,可以使用快速傅里叶变换(FFT)在O(P log P)中有效地计算乘积。但是,在一般问题中,矩阵不是Toeplitz,这使计算变得困难。在这项工作中,我们采用最近引入的稀疏矩阵变换(SMT)的概念,并提出了一种将矩阵近似分解为a的乘积的算法。系列稀疏矩阵和对角矩阵。实际上,我们证明了这种分解形成了矩阵的近似奇异值分解。通过我们的分解,矩阵向量乘积可以按O(P)阶计算。我们的方法类似于FFT可以用于快速卷积的方法,但重要的是,建议的SMT分解可以应用于表示空间或时变运算的矩阵。我们在时空变化中测试了我们算法的有效性卷积的例子。我们考虑的特殊应用是减少数码相机中的杂散光,这需要将每个新图像与大的随空间变化的杂散光点扩展函数(PSF)卷积。我们证明了我们提出的方法可以显着减少使用时空PSF精确计算图像所需的卷积所需的计算量。在第三个主题中,我们研究了功能磁共振成像激活检测的问题,即检测图像的哪个区域。当受试者受到特定刺激时,大脑就会被激活。 FMRI数据容易受到严重噪音和一定程度的模糊影响。因此,恢复信号并成功识别激活的体素是具有挑战性的逆问题。我们提出了一种新的事件相关功能磁共振成像模型,该模型明确结合了扫描仪引入的空间相关性,并开发了一套新的激活检测工具。我们提出了简单,有效的算法来估计模型参数。我们开发了一种激活检测算法,该算法包括两部分:图像恢复和最大后验(MAP)估计。在图像恢复阶段,采用基于总变异(TV)的方法为每个时间索引恢复每个数据切片。在MAP估计阶段,我们从恢复的数据中估计每个像素的参数血流动力学响应函数(HRF)模型的参数。当我们计算HRF参数的MAP估计值时,我们采用广义的高斯马尔可夫随机场(GGMRF)模型来增强空间规则性。然后,我们对幅度参数图设定阈值以获得最终的激活图。通过与广泛使用的通用线性模型方法进行比较在合成和真实数据实验中,我们展示了算法的前景和优势。

著录项

  • 作者

    Wei, Jianing.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号